

Camera View From Crane Payload: Video Stabilization

Kerry He Brandon Johns Elahe Abdi Mehrdad Arashpour

Department of Mechanical and Aerospace Engineering & Civil Engineering MONASH UNIVERSITY

INTRODUCTION

- Cranes operations
 - Unsafe
 - Slow
- Solution
 - Provide visual feedback
- Consideration
 - Payload swinging is disorienting

DIGITAL VIDEO STABILISATION

- 1. Global motion estimation
 - Camera trajectory
- 2. Intended motion estimation
 - Noise-free camera trajectory
- 3. Motion compensation
 - Warp image into intended motion frame

CONVENTIONAL INTENDED MOTION ESTIMATION

- Low-pass filtering (Litvin et al., 2003)
 - But Crane payload swinging is
 - o Low-frequency
 - o High-amplitude
- Offline curve fitting (Grundmann et al., 2011)
 - But we require real time stabilisation

METHODOLOGY

GLOBAL MOTION ESTIMATION

- Estimate Homography transformation
 - AprilTag Markers (Olson, 2011)
 - RANSAC Filtering
- Decompose into Euclidian transform
 - (Simon *et al*, 2000)

INTENDED MOTION ESTIMATION

- Intended motion
 - = Rope not swinging
 - = Directly under boom head
- How to find
 - Motion model based
 - o Need a good model
 - Model-less
 - o Need more sensors

Experiments & Results

→ Image warping

Mosaicking

Cropping

Output image

 H_{img}

 H_{mosaic}

Input image

Global motion estimation

Intended motion

estimation

MOTION COMPENSATION

- Compensation
 - Transformation: true frame -> intended frame
- Convert
 - Euclidian transformation -> homography transform
 - (Malis and Vargas, 2007)
- Remove high-frequency noise
 - Kalman filter

MOSAICKING

EXPERIMENTAL METHOD

POSE ESTIMATION

- Camera pose as measured with
 - AprilTag detections (measured)
 - YuMi robot (actual)
- Induced motion
 - o 3D Double pendulum
- RMS error
 - o 3 mm
 - \circ 0.8°

INTENDED MOTION ESTIMATION (1)

- Induced motion
 - o 2D Single pendulum
 - Stationary boom head
- Intended motion estimation
 - Model-based single pendulum
 - Oscillations reduced by a factor of 36

INTENDED MOTION ESTIMATION (2)

- Induced motion
 - 3D Double pendulum
 - Moving boom head
- Intended motion estimation
 - Model-based single pendulum
 - Oscillations reduced by a factor of 1.6

FINAL STABILIZATION RESULTS

- Induced motion
 - o 3D Double pendulum
 - Moving boom head
- Intended motion estimation
 - Model-less (known boom head pose)
 - Camera resolution: 1024 x 768 pixels
 - Mosaic resolution 2000 x 2000 pixels
 - 7.5 fps

CONCLUSION

Contributions

- Visual feedback to improve crane safety
- Online stabilization of crane swinging
 - high-amplitude
 - low-frequency
- Scaled experimental validation
 - Desired results with model-less intended motion estimation

Future Work

- Full scale experiments
- User studies
- Integrate algorithm with markerless pose estimation

