Computation of the Quantum Rate-Distortion Function

K. $He¹$ J. Saunderson¹ H. Fawzi²

¹Department of Electrical and Computer System Engineering Monash University

²Department of Applied Mathematics and Theoretical Physics University of Cambridge

67th Annual Meeting of the Australian Mathematical Society, December 2023

Introduction

Quantum rate-distortion problem: Consider the problem data

- Quantum signal $\rho \in \mathbb{H}^n_+$
- Distortion matrix $\Delta \in \mathbb{H}^{n^2}_+$
- Maximum allowable distortion $D \geq 0$

Compressed signal

つひひ

Introduction

Quantum rate-distortion problem: Consider the problem data

- Quantum signal $\rho \in \mathbb{H}^n_+$
- Distortion matrix $\Delta \in \mathbb{H}^{n^2}_+$
- Maximum allowable distortion $D \geq 0$

Maximum achievable compression of quantum signal is

$$
\min_{\sigma \in \mathbb{H}^{n^2}_+} \quad \text{tr}[\sigma \log(\sigma)] - \text{tr}[\mathcal{A}(\sigma) \log(\mathcal{A}(\sigma))]
$$
\n
$$
\text{subj. to } \quad \text{tr}[\sigma \Delta] \le D, \quad \mathcal{B}(\sigma) = \rho,
$$

for linear operators $\mathcal{A}:\mathbb{H}^{n^2}\to\mathbb{H}^n$ and $\mathcal{B}:\mathbb{H}^{n^2}\to\mathbb{H}^n$

Quantum entropy: If λ_i are the eigenvalues of σ , then

$$
\mathrm{tr}[\sigma \log(\sigma)] = \sum_{i=1}^{n^2} \lambda_i \log(\lambda_i)
$$

- Need to optimize over \mathbb{H}^{n^2} , i.e., optimization problem scales $O(n^4)$
- Is there structure in problem we can take advantage of?

つひひ

- Need to optimize over \mathbb{H}^{n^2} , i.e., optimization problem scales $O(n^4)$
- Is there structure in problem we can take advantage of?
- Use symmetry reduction

- Need to optimize over \mathbb{H}^{n^2} , i.e., optimization problem scales $O(n^4)$
- Is there structure in problem we can take advantage of?
- Use symmetry reduction

Not many good algorithms available to compute quantum functions

- Approximate logarithms as linear matrix inequalities [Fawzi & Saunderson, 2023]
- Primal-dual interior point methods for general non-symmetric conic programs [Dahl & Andersen, 2022], [Coey et al., 2022], [Papp & Yildiz, 2022], [Karimi & Tuncel, 2020]

- Need to optimize over \mathbb{H}^{n^2} , i.e., optimization problem scales $O(n^4)$
- Is there structure in problem we can take advantage of?
- Use symmetry reduction

Not many good algorithms available to compute quantum functions

- Approximate logarithms as linear matrix inequalities [Fawzi & Saunderson, 2023]
- Primal-dual interior point methods for general non-symmetric conic programs [Dahl & Andersen, 2022], [Coey et al., 2022], [Papp & Yildiz, 2022], [Karimi & Tuncel, 2020]
- **o** Use mirror descent

重

4 ロ ▶ 4 何 ▶

 299

Many optimization problems possess symmetries

If problem is convex, symmetries inform us about problem solutions

 \leftarrow \Box

Many optimization problems possess symmetries

If problem is convex, symmetries inform us about problem solutions

A representation of a group G is a pair (\mathbb{V}, π) , where

- $\bullet \mathbb{V}$ is a vector space
- $\pi : \mathcal{G} \to GL(V)$ is a group homomorphism

e.g., for group $\mathcal G$ consisting of matrices, let $(\mathbb H^n,\pi)$ be a congruence trans.

$$
\pi(g)(X)=gXg^{\dagger},\quad \forall g\in\mathcal{G}
$$

Fixed-point subspace V_π : Set of all pnts. fixed under $\pi(g)$ for all $g \in \mathcal{G}$.

4 0 8

∍

Fixed-point subspace V_π : Set of all pnts. fixed under $\pi(g)$ for all $g \in \mathcal{G}$.

Projection operator P_{π} : Linear proj. onto the fixed-point subspace V_{π} . Given by the group average

$$
P_\pi = \frac{1}{|\mathcal{G}|}\sum_{\boldsymbol{g}\in\mathcal{G}}\pi(\boldsymbol{g}).
$$

Lemma 1

Consider a representation (\mathbb{V}, π) of a group \mathcal{G} . If a convex optimization problem

$$
\min_{x} f(x), \quad \text{subj. to } x \in \mathcal{X},
$$

is invariant under π , meaning

$$
f(\pi(g)(x)) = f(x) \qquad \forall g \in \mathcal{G}, \ \forall x \in \mathcal{X}
$$

and
$$
\pi(g)(x) \in \mathcal{X} \qquad \forall g \in \mathcal{G}, \ \forall x \in \mathcal{X},
$$

then there is an optimal point for the optimization problem in V_{π} .

 \leftarrow \Box

 200

Lemma 1

Consider a representation (\mathbb{V}, π) of a group \mathcal{G} . If a convex optimization problem

$$
\min_{x} f(x), \quad \text{subj. to } x \in \mathcal{X},
$$

is invariant under π , meaning

$$
f(\pi(g)(x)) = f(x) \qquad \forall g \in \mathcal{G}, \ \forall x \in \mathcal{X}
$$

and
$$
\pi(g)(x) \in \mathcal{X} \qquad \forall g \in \mathcal{G}, \ \forall x \in \mathcal{X},
$$

then there is an optimal point for the optimization problem in V_{π} .

Proof:

$$
f^*\leq f\bigg(\frac{1}{|\mathcal{G}|}\sum_{\mathcal{g}\in\mathcal{G}}\pi(\mathcal{g})(x^*)\bigg)\leq \frac{1}{|\mathcal{G}|}\sum_{\mathcal{g}\in\mathcal{G}}f(\pi(\mathcal{g})(x^*))=\frac{1}{|\mathcal{G}|}\sum_{\mathcal{g}\in\mathcal{G}}f^* = f^*.
$$

 \leftarrow \Box

Typically use the entanglement fidelity distortion matrix

$$
\Delta = \sum_{ij}^{n} \sqrt{\lambda_i \lambda_j} v_i v_j^{\dagger} \otimes v_i v_j^{\dagger}, \text{ where } \rho = \sum_{i=1}^{n} \lambda_i v_i v_i^{\dagger}.
$$

4 D F

Þ

 298

Typically use the entanglement fidelity distortion matrix

$$
\Delta = \sum_{ij}^{n} \sqrt{\lambda_i \lambda_j} \, v_i v_j^{\dagger} \otimes v_i v_j^{\dagger}, \quad \text{where} \quad \rho = \sum_{i=1}^{n} \lambda_i v_i v_i^{\dagger}.
$$

Theorem 2 (HSF, 2023)

Consider the group

$$
\mathcal{G}_{ea} = \left\{ \sum_{i=1}^{n} z_i v_i v_i^{\dagger} : z \in \{\pm 1, \pm \sqrt{-1}\}^n \right\}
$$

and corresponding representation $(\mathbb{H}^{n^2},\pi_{cc})$ where $\pi_{cc} (g)(X) = (g \otimes \bar{g}) X (g \otimes \bar{g})^\dagger.$

The quantum rate-distortion problem is invariant under this representation.

Typically use the entanglement fidelity distortion matrix

$$
\Delta = \sum_{ij}^{n} \sqrt{\lambda_i \lambda_j} \, v_i v_j^{\dagger} \otimes v_i v_j^{\dagger}, \quad \text{where} \quad \rho = \sum_{i=1}^{n} \lambda_i v_i v_i^{\dagger}.
$$

Corollary 2 (HSF, 2023)

A solution to the quantum rate-distortion problem is in

$$
\mathcal{V}_{ea} = \bigg\{\sum_{i \neq j}^{n} \alpha_{ij} v_i v_j^{\dagger} \otimes v_j v_j^{\dagger} + \sum_{ij}^{n} \beta_{ij} v_i v_j^{\dagger} \otimes v_i v_j^{\dagger} : \alpha_{ij} \in \mathbb{R} \ \forall i \neq j, \ \beta \in \mathbb{H}^n \bigg\}.
$$

 200

Typically use the entanglement fidelity distortion matrix

$$
\Delta = \sum_{ij}^{n} \sqrt{\lambda_i \lambda_j} \, v_i v_j^{\dagger} \otimes v_i v_j^{\dagger}, \quad \text{where} \quad \rho = \sum_{i=1}^{n} \lambda_i v_i v_i^{\dagger}.
$$

Corollary 2 (HSF, 2023)

A solution to the quantum rate-distortion problem is in

$$
\mathcal{V}_{ea} = \bigg\{\sum_{i \neq j}^{n} \alpha_{ij} v_i v_j^{\dagger} \otimes v_j v_j^{\dagger} + \sum_{ij}^{n} \beta_{ij} v_i v_j^{\dagger} \otimes v_i v_j^{\dagger} : \alpha_{ij} \in \mathbb{R} \ \forall i \neq j, \ \beta \in \mathbb{H}^n \bigg\}.
$$

This subspace $\mathcal{V}_{ea}\subset \mathbb{H}^{n^2}$ has a real dimension of $2n^2-n$

Visualizing sparsity structure when v_i is the standard basis and $n=16$:

Isomorphic to

- $n^2 n$ blocks of size 1×1 ,
- \bullet ones block of size $n \times n$.

Easy to take eigendecomposition, quantum entropies, etc.

٠ \mathbf{b}

4 ロ ▶ 4 母 ▶ 4

重

 299

Consider constrained convex optimization problem

min $f(x)$.
 $x \in \mathcal{X}$

Projected gradient descent can be represented as

$$
x^{k+1} = \underset{x \in \mathcal{X}}{\arg \min} \left\langle \nabla f(x^k), x \right\rangle + \frac{1}{2t_k} \|x - x^k\|_2^2
$$

4 D F

 QQ

Consider constrained convex optimization problem

min $f(x)$.
 $x \in \mathcal{X}$

Projected gradient descent can be represented as

$$
x^{k+1} = \underset{x \in \mathcal{X}}{\arg \min} \left\langle \nabla f(x^k), x \right\rangle + \frac{1}{2t_k} \|x - x^k\|_2^2
$$

Mirror descent replaces Euclidean norm with Bregman divergence

$$
x^{k+1} = \underset{x \in \mathcal{X}}{\arg \min} \left\langle \nabla f(x^k), x \right\rangle + \frac{1}{t_k} D_{\varphi}(x \| y)
$$

where

$$
D_{\varphi}(x\Vert y) := \varphi(x) - (\varphi(y) + \langle \nabla \varphi(y), x - y \rangle).
$$

Mirror descent – convergence

A function f is L-smooth relative to φ if for $L > 0$

 $L\varphi$ – f convex

Mirror descent w/ $t_k = 1/L$ converges sublinearly if f is L-smooth rel. to φ

 QQ

Mirror descent – convergence

A function f is L-smooth relative to φ if for $L > 0$

 $L\varphi$ – f convex

Mirror descent w/ $t_k = 1/L$ converges sublinearly if f is L-smooth rel. to φ

Theorem 3 (HSF, 2023)

The objective function of the quantum rate-distortion problem is 1-smooth relative to $\varphi(x) = \text{tr}[x \log(x)].$

Therefore, mirror descent applied to QRD problem with unit step size and $\varphi(x) = \text{tr}[x \log(x)]$ will converge sublinearly to global optimum.

Mirror descent – convergence

A function f is L-smooth relative to φ if for $L > 0$

 $L\varphi$ – f convex

Mirror descent w/ $t_k = 1/L$ converges sublinearly if f is L-smooth rel. to φ

Theorem 3 (HSF, 2023)

The objective function of the quantum rate-distortion problem is 1-smooth relative to $\varphi(x) = \text{tr}[x \log(x)].$

Therefore, mirror descent applied to QRD problem with unit step size and $\varphi(x) = \text{tr}[x \log(x)]$ will converge sublinearly to global optimum.

Caveat:

- Each iteration requires solving a convex subproblem
- Can do efficiently by solving the dual problem inexactly (while retaining convergence guarantees!) イロン イ部ン イヨン イヨン 一番

He, Kerry (Monash University) ([Quantum Rate-Distortion](#page-0-0) AUSTMS23 12/14

Numerical experiments

(a) Without symmetry reduction

(b) With symmetry reduction

\boldsymbol{n}	#variables	D	Ours		CVXQUAD	
			Time(s)	Gap	Time (s)	Gap
8	1×10^2	0.8	.17	$7e-9$	454.98	$2e-8$
		0.5	.07	$4e-9$	686.11	$6e - 8$
32	2×10^3	0.8	1.52	$6e-8$	Out of memory Out of memory	
		0.6	.32	$5e-9$		
512	5×10^5	0.9	2174.38	$7e-8$	Out of memory Out of memory	
		0.6	1216.96	$5e-9$		

 \rightarrow \equiv \rightarrow

4 ロ ▶ 4 母 ▶ 4

É

Summary:

- Rate-distortion problems possess symmetries that can be exploited to significantly reduce dimensionality of the optimization problem.
- Mirror descent algorithm can efficiently solve the problem

 \leftarrow \Box

Summary:

- Rate-distortion problems possess symmetries that can be exploited to significantly reduce dimensionality of the optimization problem.
- Mirror descent algorithm can efficiently solve the problem

Outlook:

- \bullet Other problems in quantum inf. theory w/ symmetries we can exploit?
- Study how to solve mirror descent subproblems in more detail

Summary:

- Rate-distortion problems possess symmetries that can be exploited to significantly reduce dimensionality of the optimization problem.
- Mirror descent algorithm can efficiently solve the problem

Outlook:

- \bullet Other problems in quantum inf. theory w/ symmetries we can exploit?
- Study how to solve mirror descent subproblems in more detail

Paper: <https://arxiv.org/abs/2309.15919> Code: <https://github.com/kerry-he/efficient-qrd>