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Introduction

Quantum rate-distortion problem: Consider the problem data

Quantum signal ρ ∈ Hn
+

Distortion matrix ∆ ∈ Hn2
+

Maximum allowable distortion D ≥ 0
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Introduction

Quantum rate-distortion problem: Consider the problem data

Quantum signal ρ ∈ Hn
+

Distortion matrix ∆ ∈ Hn2
+

Maximum allowable distortion D ≥ 0
Maximum achievable compression of quantum signal is

min
σ∈Hn2

+

tr[σ log(σ)]− tr[A(σ) log(A(σ))]

subj. to tr[σ∆] ≤ D, B(σ) = ρ,

for linear operators A : Hn2 → Hn and B : Hn2 → Hn

Quantum entropy: If λi are the eigenvalues of σ, then

tr[σ log(σ)] =
n2∑
i=1

λi log(λi )

He, Kerry (Monash University) Quantum Rate-Distortion AUSTMS23 2 / 14



Introduction

Problem dimension can scale quickly

Need to optimize over Hn2 , i.e., optimization problem scales O(n4)

Is there structure in problem we can take advantage of?

Use symmetry reduction

Not many good algorithms available to compute quantum functions

Approximate logarithms as linear matrix inequalities [Fawzi &
Saunderson, 2023]

Primal-dual interior point methods for general non-symmetric conic
programs [Dahl & Andersen, 2022], [Coey et al., 2022], [Papp &
Yildiz, 2022], [Karimi & Tuncel, 2020]

Use mirror descent
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Preliminaries

Many optimization problems possess symmetries

If problem is convex, symmetries inform us about problem solutions

A representation of a group G is a pair (V, π), where
V is a vector space

π : G → GL(V) is a group homomorphism

e.g., for group G consisting of matrices, let (Hn, π) be a congruence trans.

π(g)(X ) = gXg †, ∀g ∈ G
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Preliminaries

Fixed-point subspace Vπ: Set of all pnts. fixed under π(g) for all g ∈ G.

Projection operator Pπ: Linear proj. onto the fixed-point subspace Vπ.
Given by the group average

Pπ =
1

|G|
∑
g∈G

π(g).
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Preliminaries

Lemma 1

Consider a representation (V, π) of a group G. If a convex optimization
problem

min
x

f (x), subj. to x ∈ X ,

is invariant under π, meaning

f (π(g)(x)) = f (x) ∀g ∈ G, ∀x ∈ X
and π(g)(x) ∈ X ∀g ∈ G, ∀x ∈ X ,

then there is an optimal point for the optimization problem in Vπ.

Proof:

f ∗ ≤ f

(
1

|G|
∑
g∈G

π(g)(x∗)

)
≤ 1

|G|
∑
g∈G

f (π(g)(x∗)) =
1

|G|
∑
g∈G

f ∗ = f ∗.
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Quantum rate-distortion

Typically use the entanglement fidelity distortion matrix

∆ =
n∑
ij

√
λiλj viv

†
j ⊗ viv

†
j , where ρ =

n∑
i=1

λiviv
†
i .
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ij

√
λiλj viv

†
j ⊗ viv

†
j , where ρ =

n∑
i=1

λiviv
†
i .

Theorem 2 (HSF, 2023)

Consider the group

Gea =

{ n∑
i=1

ziviv
†
i : z ∈ {±1,±

√
−1}n

}

and corresponding representation (Hn2 , πcc) where

πcc(g)(X ) = (g ⊗ ḡ)X (g ⊗ ḡ)†.

The quantum rate-distortion problem is invariant under this representation.

He, Kerry (Monash University) Quantum Rate-Distortion AUSTMS23 8 / 14



Quantum rate-distortion

Typically use the entanglement fidelity distortion matrix

∆ =
n∑
ij

√
λiλj viv

†
j ⊗ viv

†
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λiviv
†
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Corollary 2 (HSF, 2023)

A solution to the quantum rate-distortion problem is in

Vea =

{ n∑
i ̸=j

αijviv
†
i ⊗ vjv

†
j +

n∑
ij

βijviv
†
j ⊗ viv

†
j : αij ∈ R ∀i ̸= j , β ∈ Hn

}
.
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λiviv
†
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A solution to the quantum rate-distortion problem is in

Vea =

{ n∑
i ̸=j

αijviv
†
i ⊗ vjv

†
j +

n∑
ij

βijviv
†
j ⊗ viv

†
j : αij ∈ R ∀i ̸= j , β ∈ Hn

}
.

This subspace Vea ⊂ Hn2 has a real dimension of 2n2 − n
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Quantum rate-distortion

Visualizing sparsity structure when vi is the standard basis and n = 16:

Isomorphic to

n2 − n blocks of size 1× 1,

ones block of size n × n.

Easy to take eigendecomposition, quantum entropies, etc.
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Mirror descent

Consider constrained convex optimization problem

min
x∈X

f (x).

Projected gradient descent can be represented as

xk+1 = argmin
x∈X

⟨∇f (xk), x⟩+ 1

2tk
∥x − xk∥22

Mirror descent replaces Euclidean norm with Bregman divergence

xk+1 = argmin
x∈X

⟨∇f (xk), x⟩+ 1

tk
Dφ(x ∥y)

where
Dφ(x ∥y) := φ(x)− (φ(y) + ⟨∇φ(y), x − y⟩).
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Mirror descent – convergence

A function f is L-smooth relative to φ if for L > 0

Lφ− f convex

Mirror descent w/ tk = 1/L converges sublinearly if f is L-smooth rel. to φ

Theorem 3 (HSF, 2023)

The objective function of the quantum rate-distortion problem is 1-smooth
relative to φ(x) = tr[x log(x)].

Therefore, mirror descent applied to QRD problem with unit step size and
φ(x) = tr[x log(x)] will converge sublinearly to global optimum.

Caveat:

Each iteration requires solving a convex subproblem

Can do efficiently by solving the dual problem inexactly (while
retaining convergence guarantees!)
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Numerical experiments
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Conclusion

Summary:

Rate-distortion problems possess symmetries that can be exploited to
significantly reduce dimensionality of the optimization problem.

Mirror descent algorithm can efficiently solve the problem

Outlook:

Other problems in quantum inf. theory w/ symmetries we can exploit?

Study how to solve mirror descent subproblems in more detail

Paper: https://arxiv.org/abs/2309.15919
Code: https://github.com/kerry-he/efficient-qrd
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