Computation of the Quantum Rate-Distortion Function

K. He^1 J. Saunderson¹ H. Fawzi²

¹Department of Electrical and Computer System Engineering Monash University

²Department of Applied Mathematics and Theoretical Physics University of Cambridge

67th Annual Meeting of the Australian Mathematical Society, December 2023

Introduction

Quantum rate-distortion problem: Consider the problem data

- Quantum signal $\rho \in \mathbb{H}^n_+$
- Distortion matrix $\Delta \in \mathbb{H}^{n^2}_+$
- Maximum allowable distortion $D \ge 0$

Input signal

Compressed signal

< A > < E

Introduction

Quantum rate-distortion problem: Consider the problem data

- Quantum signal $ho \in \mathbb{H}^n_+$
- Distortion matrix $\Delta \in \mathbb{H}^{n^2}_+$
- Maximum allowable distortion $D \ge 0$

Maximum achievable compression of quantum signal is

$$\begin{split} \min_{\sigma \in \mathbb{H}^{2^{2}}_{+}} & \operatorname{tr}[\sigma \log(\sigma)] - \operatorname{tr}[\mathcal{A}(\sigma) \log(\mathcal{A}(\sigma))] \\ \text{subj. to} & \operatorname{tr}[\sigma \Delta] \leq D, \quad \mathcal{B}(\sigma) = \rho, \end{split}$$

for linear operators $\mathcal{A}:\mathbb{H}^{n^2} o\mathbb{H}^n$ and $\mathcal{B}:\mathbb{H}^{n^2} o\mathbb{H}^n$

Quantum entropy: If λ_i are the eigenvalues of σ , then

$$\operatorname{tr}[\sigma \log(\sigma)] = \sum_{i=1}^{n^2} \lambda_i \log(\lambda_i)$$

- Need to optimize over \mathbb{H}^{n^2} , i.e., optimization problem scales $O(n^4)$
- Is there structure in problem we can take advantage of?

- Need to optimize over \mathbb{H}^{n^2} , i.e., optimization problem scales $O(n^4)$
- Is there structure in problem we can take advantage of?
- Use symmetry reduction

- Need to optimize over \mathbb{H}^{n^2} , i.e., optimization problem scales $O(n^4)$
- Is there structure in problem we can take advantage of?
- Use symmetry reduction

Not many good algorithms available to compute quantum functions

- Approximate logarithms as linear matrix inequalities [Fawzi & Saunderson, 2023]
- Primal-dual interior point methods for general non-symmetric conic programs [Dahl & Andersen, 2022], [Coey et al., 2022], [Papp & Yildiz, 2022], [Karimi & Tuncel, 2020]

- Need to optimize over \mathbb{H}^{n^2} , i.e., optimization problem scales $O(n^4)$
- Is there structure in problem we can take advantage of?
- Use symmetry reduction

Not many good algorithms available to compute quantum functions

- Approximate logarithms as linear matrix inequalities [Fawzi & Saunderson, 2023]
- Primal-dual interior point methods for general non-symmetric conic programs [Dahl & Andersen, 2022], [Coey et al., 2022], [Papp & Yildiz, 2022], [Karimi & Tuncel, 2020]
- Use mirror descent

< □ > < 同 >

돌▶ 돌

Many optimization problems possess symmetries

If problem is convex, symmetries inform us about problem solutions

Many optimization problems possess symmetries

If problem is convex, symmetries inform us about problem solutions

A **representation** of a group \mathcal{G} is a pair (\mathbb{V}, π) , where

- $\mathbb V$ is a vector space
- $\pi:\mathcal{G}\to \textit{GL}(\mathbb{V})$ is a group homomorphism

e.g., for group $\mathcal G$ consisting of matrices, let $(\mathbb H^n,\pi)$ be a congruence trans.

$$\pi(g)(X) = gXg^{\dagger}, \quad \forall g \in \mathcal{G}$$

Fixed-point subspace \mathcal{V}_{π} : Set of all pnts. fixed under $\pi(g)$ for all $g \in \mathcal{G}$.

Fixed-point subspace \mathcal{V}_{π} : Set of all pnts. fixed under $\pi(g)$ for all $g \in \mathcal{G}$.

Projection operator P_{π} : Linear proj. onto the fixed-point subspace \mathcal{V}_{π} . Given by the group average

$$P_{\pi} = rac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \pi(g).$$

Lemma 1

Consider a representation (\mathbb{V},π) of a group \mathcal{G} . If a convex optimization problem

$$\min_{x} f(x), \quad \text{subj. to } x \in \mathcal{X},$$

is invariant under π , meaning

$$f(\pi(g)(x)) = f(x)$$
 $\forall g \in \mathcal{G}, \ \forall x \in \mathcal{X}$
and $\pi(g)(x) \in \mathcal{X}$ $\forall g \in \mathcal{G}, \ \forall x \in \mathcal{X},$

then there is an optimal point for the optimization problem in \mathcal{V}_{π} .

7/14

Lemma 1

Consider a representation (\mathbb{V},π) of a group $\mathcal{G}.$ If a convex optimization problem

$$\min_{x} f(x), \quad \text{subj. to } x \in \mathcal{X},$$

is invariant under $\pi,$ meaning

$$f(\pi(g)(x)) = f(x)$$
 $\forall g \in \mathcal{G}, \ \forall x \in \mathcal{X}$
and $\pi(g)(x) \in \mathcal{X}$ $\forall g \in \mathcal{G}, \ \forall x \in \mathcal{X},$

then there is an optimal point for the optimization problem in $\mathcal{V}_{\pi}.$

Proof:

$$f^* \leq figg(rac{1}{|\mathcal{G}|}\sum_{g\in\mathcal{G}}\pi(g)(x^*)igg) \leq rac{1}{|\mathcal{G}|}\sum_{g\in\mathcal{G}}f(\pi(g)(x^*)) = rac{1}{|\mathcal{G}|}\sum_{g\in\mathcal{G}}f^* = f^*.$$

Typically use the entanglement fidelity distortion matrix

$$\Delta = \sum_{ij}^{n} \sqrt{\lambda_i \lambda_j} \, v_i v_j^{\dagger} \otimes v_i v_j^{\dagger}, \quad \text{where} \quad \rho = \sum_{i=1}^{n} \lambda_i v_i v_i^{\dagger}.$$

8/14

< 1 k

Typically use the entanglement fidelity distortion matrix

$$\Delta = \sum_{ij}^{n} \sqrt{\lambda_i \lambda_j} \, v_i v_j^{\dagger} \otimes v_i v_j^{\dagger}, \quad \text{where} \quad \rho = \sum_{i=1}^{n} \lambda_i v_i v_j^{\dagger}.$$

Theorem 2 (HSF, 2023)

Consider the group

$$\mathcal{G}_{ea} = \left\{ \sum_{i=1}^{n} z_i v_i v_i^{\dagger} : z \in \{\pm 1, \pm \sqrt{-1}\}^n \right\}$$

and corresponding representation $(\mathbb{H}^{n^2}, \pi_{cc})$ where $\pi_{cc}(g)(X) = (g \otimes \bar{g})X(g \otimes \bar{g})^{\dagger}.$

The quantum rate-distortion problem is invariant under this representation.

Typically use the entanglement fidelity distortion matrix

$$\Delta = \sum_{ij}^{n} \sqrt{\lambda_i \lambda_j} \, v_i v_j^{\dagger} \otimes v_i v_j^{\dagger}, \quad \text{where} \quad \rho = \sum_{i=1}^{n} \lambda_i v_i v_j^{\dagger}.$$

Corollary 2 (HSF, 2023)

A solution to the quantum rate-distortion problem is in

$$\mathcal{V}_{ea} = \bigg\{ \sum_{i \neq j}^{n} \alpha_{ij} \mathbf{v}_{i} \mathbf{v}_{i}^{\dagger} \otimes \mathbf{v}_{j} \mathbf{v}_{j}^{\dagger} + \sum_{ij}^{n} \beta_{ij} \mathbf{v}_{i} \mathbf{v}_{j}^{\dagger} \otimes \mathbf{v}_{i} \mathbf{v}_{j}^{\dagger} : \alpha_{ij} \in \mathbb{R} \ \forall i \neq j, \ \beta \in \mathbb{H}^{n} \bigg\}.$$

Typically use the entanglement fidelity distortion matrix

$$\Delta = \sum_{ij}^{n} \sqrt{\lambda_i \lambda_j} \, v_i v_j^{\dagger} \otimes v_i v_j^{\dagger}, \quad \text{where} \quad \rho = \sum_{i=1}^{n} \lambda_i v_i v_i^{\dagger}.$$

Corollary 2 (HSF, 2023)

A solution to the quantum rate-distortion problem is in

$$\mathcal{V}_{ea} = \left\{ \sum_{i \neq j}^{n} \alpha_{ij} \mathbf{v}_{i} \mathbf{v}_{i}^{\dagger} \otimes \mathbf{v}_{j} \mathbf{v}_{j}^{\dagger} + \sum_{ij}^{n} \beta_{ij} \mathbf{v}_{i} \mathbf{v}_{j}^{\dagger} \otimes \mathbf{v}_{i} \mathbf{v}_{j}^{\dagger} : \alpha_{ij} \in \mathbb{R} \ \forall i \neq j, \ \beta \in \mathbb{H}^{n} \right\}.$$

This subspace $\mathcal{V}_{ea} \subset \mathbb{H}^{n^2}$ has a real dimension of $2n^2 - n$

Visualizing sparsity structure when v_i is the standard basis and n = 16:

Isomorphic to

- $n^2 n$ blocks of size 1×1 ,
- ones block of size $n \times n$.

Easy to take eigendecomposition, quantum entropies, etc.

Image: A matrix

æ

Consider constrained convex optimization problem

 $\min_{x\in\mathcal{X}} \quad f(x).$

Projected gradient descent can be represented as

$$x^{k+1} = \arg\min_{x \in \mathcal{X}} \langle \nabla f(x^k), x \rangle + \frac{1}{2t_k} \|x - x^k\|_2^2$$

Image: A matrix and a matrix

э

11/14

Consider constrained convex optimization problem

 $\min_{x\in\mathcal{X}} \quad f(x).$

Projected gradient descent can be represented as

$$x^{k+1} = \underset{x \in \mathcal{X}}{\arg\min} \langle \nabla f(x^k), x \rangle + \frac{1}{2t_k} \|x - x^k\|_2^2$$

Mirror descent replaces Euclidean norm with Bregman divergence

$$x^{k+1} = \operatorname*{arg\,min}_{x \in \mathcal{X}} \langle \nabla f(x^k), x \rangle + \frac{1}{t_k} D_{\varphi}(x \| y)$$

where

$$D_{\varphi}(x \| y) \coloneqq \varphi(x) - (\varphi(y) + \langle \nabla \varphi(y), x - y \rangle).$$

Mirror descent – convergence

A function f is *L*-smooth relative to φ if for L > 0

 $L\varphi - f$ convex

Mirror descent w/ $t_k = 1/L$ converges sublinearly if f is L-smooth rel. to φ

э

Mirror descent – convergence

A function f is L-smooth relative to φ if for L > 0

 $L\varphi - f$ convex

Mirror descent w/ $t_k = 1/L$ converges sublinearly if f is L-smooth rel. to φ

Theorem 3 (HSF, 2023)

The objective function of the quantum rate-distortion problem is 1-smooth relative to $\varphi(x) = tr[x \log(x)]$.

Therefore, mirror descent applied to QRD problem with unit step size and $\varphi(x) = tr[x \log(x)]$ will converge sublinearly to global optimum.

Mirror descent – convergence

A function f is *L*-smooth relative to φ if for L > 0

 $L\varphi - f$ convex

Mirror descent w/ $t_k = 1/L$ converges sublinearly if f is L-smooth rel. to φ

Theorem 3 (HSF, 2023)

The objective function of the quantum rate-distortion problem is 1-smooth relative to $\varphi(x) = tr[x \log(x)]$.

Therefore, mirror descent applied to QRD problem with unit step size and $\varphi(x) = tr[x \log(x)]$ will converge sublinearly to global optimum.

Caveat:

- Each iteration requires solving a convex subproblem
- Can do efficiently by solving the dual problem inexactly (while retaining convergence guarantees!)

He, Kerry (Monash University)

Numerical experiments

n	#variables	D	Ours		CVXQUAD		
			Time (s)	Gap	Time (s)	Gap	
8	4×10^3	0.8	4.88	2e - 8	Out of memory		
		0.5	1.12	1e-8	Out of me	Out of memory	
32	1×10^{6}	0.8	> 3600.00	2e-7	Out of memory		
		0.6	1321.85	1e-7	Out of me	mory	
512	7×10^{10}	0.9	Out of me	Out of memory Out of memory		mory	
		0.6	Out of me			mory	

(a) Without symmetry reduction

(b) With symmetry reduction

n	#variables	D	Ours		CvxQuad	
			Time (s)	Gap	Time (s)	Gap
8	1×10^2	0.8	.17	7e-9	454.98	2e-8
		0.5	.07	4e-9	686.11	6e-8
32	2×10^3	0.8	1.52	6e-8	Out of memory Out of memory	
		0.6	.32	5e-9		
512	5×10^5	0.9	2174.38	7e-8	Out of memory	
		0.6	1216.96	5e-9	Out of memory	

Image: A matrix and a matrix

æ

Summary:

- Rate-distortion problems possess symmetries that can be exploited to significantly reduce dimensionality of the optimization problem.
- Mirror descent algorithm can efficiently solve the problem

14/14

Summary:

- Rate-distortion problems possess symmetries that can be exploited to significantly reduce dimensionality of the optimization problem.
- Mirror descent algorithm can efficiently solve the problem

Outlook:

- Other problems in quantum inf. theory w/ symmetries we can exploit?
- Study how to solve mirror descent subproblems in more detail

14/14

Summary:

- Rate-distortion problems possess symmetries that can be exploited to significantly reduce dimensionality of the optimization problem.
- Mirror descent algorithm can efficiently solve the problem

Outlook:

- Other problems in quantum inf. theory w/ symmetries we can exploit?
- Study how to solve mirror descent subproblems in more detail

Paper: https://arxiv.org/abs/2309.15919 Code: https://github.com/kerry-he/efficient-qrd