
Designing a Receding Horizon
Planner for an Autonomous Formula

Student Racecar

by
Kerry He

Supervised by:

Hoam Chung

Final Year Project

Mechanical and Aerospace Engineering
Monash University

October 2021

Summary

In autonomous driving, the motion planning subsystem is required to determine a feasible state
and control trajectory to navigate the vehicle to perform a specific task. This thesis presents an
implementation of a receding horizon planner (RHP) to perform motion planning for Monash
Motorsport’s autonomous racecar to compete in the Formula Student Driverless competition.

Multiple modelling and discretisation methods were explored to determine the best per-
forming RHP formulation. An extensive comparison of each formulation was conducted by
prototyping each RHP in MATLAB, and performing simulated experiments in a simplified en-
vironment. The best performing RHP was then translated into C++ and validated in a full real
time hardware-in-the-loop simulation.

Overall, a linear time-varying RHP formulation utilising a dynamic bicycle model is proposed,
where the vehicle dynamics and path constraints are linearised at each time step, allowing the
RHP to be formulated and solved as a quadratic program. An optimal racing line is precom-
puted offline by solving for a periodic time-optimal trajectory along the entire track, which the
RHP then tracks in real time. Through simulated experiments, the proposed RHP is shown to
be robust to noise, time delay and modelling error, and successfully outperforms Monash Mo-
torsport’s previous motion planning and control implementations. The RHP is demonstrated to
safely achieve speeds of up to 25 m/s while running in real time at 50 Hz.

i

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Hoam Chung, for giving me guidance on the
project throughout the year. His expertise was hugely beneficial to the success of the project and
my own academic growth. I appreciate the weekly meetings, extremely prompt email responses,
time spent looking over my work, the flexibility he allowed me to explore my project, and the
informal chats we had about topics other than my honours project.

I am also grateful to the Monash Motorsport team as a whole, for the opportunities of
personal and professional development it has provided, and for providing such a thrilling context
to be able to develop my research for. The support, friendships, and lessons Monash Motorsport
has provided me have been invaluable to me. I hope that this thesis will provide the team with
a solid foundation for motion planning, and help in making the autonomous vehicle concept
competitive on a global scale.

Finally, I would like to thank my friends who have helped proof-read my thesis: J. Coleman,
A. Ye-Lin, A. Romesh, and L. Candido. It is a very long document, and I greatly appreciate
their time spent reading through it and providing feedback for it.

ii

Acronyms

BFGS Broyden–Fletcher–Goldfarb–Shanno

CoG center of gravity

ECU electronic control unit

FSD Formula Student Driverless

GPS global positioning system

IMU inertial measurement unit

IP interior-point

LiDAR light detection and ranging

LTV linear time-varying

MMS Monash Motorsport

NLP nonlinear program

PID proportional–integral–derivative

QP quadratic program

RHP receding horizon planner

RK Runge-Kutta

RTI real-time iterative

SLAM simultaneous localisation and mapping

SQP sequential quadratic program

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Research problem . 2
1.3 Literature review . 3

1.3.1 Motion planning . 3
1.3.2 Receding horizon planning . 4
1.3.3 Vehicle modelling . 6

2 Plant Model 7
2.1 Kinematic bicycle model . 7
2.2 Dynamic bicycle model . 8

2.2.1 Low-velocity compensation . 9
2.3 Curvilinear coordinate system . 10

2.3.1 Path formulation . 11
2.3.2 Coordinate transform . 13

2.4 Actuator modelling . 13
2.5 Summary . 14

3 Optimal Planning for Racing 15
3.1 Receding horizon planning . 15

3.1.1 Soft constraints . 17
3.1.2 Friction ellipse . 18

3.2 Time optimal planning . 19

4 Discretisation 21
4.1 Successive linearisation . 21

4.1.1 Constraint linearisation . 24
4.2 Multiple shooting . 25
4.3 Trapezoidal collocation . 26
4.4 Integration schemes . 27

iv

5 Implementation 29
5.1 Time delay compensation . 29
5.2 Hot-starting . 30
5.3 Block matrix multiplication . 31

6 Experimental Results 33
6.1 RHP Formulation Analysis . 33

6.1.1 Vehicle model . 34
6.1.2 Discretisation . 35

6.2 Full simulation . 38
6.2.1 Tuning . 39
6.2.2 Racing performance . 40
6.2.3 Computation time . 44

7 Conclusion 45
7.1 Future work . 46

A Nonlinear programming matrices 52
A.1 Multiple shooting . 52
A.2 Trapezoidal collocation . 53

v

Chapter 1

Introduction

1.1 Background

Formula Student Driverless (FSD) is a university engineering design competition which started
in 2017 and is ran by Formula Student1. The competition tasks student teams with designing,
building, and programming a Formula-style race car which can autonomously navigate through
known and unknown tracks as quickly as possible. There are four different missions that the
autonomous vehicle must complete:

• Acceleration: 75 m of a simple straight line track.

• Skidpad: A figure of eight track, where the car performs two laps around the right-hand
loop, followed by two laps around the left-hand loop.

• Autocross: A single lap of an unknown, closed-loop track consisting of straights, constant
turns, hairpin turns, slaloms and other miscellaneous track features.

• Trackdrive: 10 laps of the same track as the autocross mission. However, data obtained
from the autocross mission can be utilised.

Each of these tracks have boundaries which are outlined by cones. Points are awarded for each
mission based on the times taken to complete them, scaled relative to the team with the fastest
times. A 2 s time penalty is added onto the lap times if the the car collides into a cone, and
a 10 s time penalty is added if the vehicle exits the track boundaries completely. Vehicles race
independently on the track for each mission.

Monash Motorsport (MMS) is Monash University’s Formula Student team which began
development of a driverless car in 2018. In 2019, the team converted their existing rear-wheel
drive electric car into a driverless car named M19-D. On M19-D, cameras and light detection
and ranging (LiDAR) sensors are used to detect cones around the track. The simultaneous
localisation and mapping (SLAM) algorithm uses these landmark detections and additional data

1https://www.formulastudent.de/fsg/

1

Chapter 1 – Introduction

from the global positioning system (GPS) and inertial measurement unit (IMU) to perform state
estimation and mapping. A racing trajectory is computed by the motion planning algorithm
using this state estimate, and the corresponding velocity and steering wheel angle setpoints are
communicated to low-level proportional–integral–derivative (PID) controllers which interface
directly with the physical actuators. High-level autonomous systems algorithms are run on
the NVIDIA Jetson AGX Xavier computing unit, while low-level safety and control algorithms
are run on the MoTeC M150 electronic control unit (ECU). An overview of the autonomous
systems currently on M19-D is shown in Figure 1.1. Currently, the team is in development of a
new electric-driverless car, M21, with the aim to compete in FSD in Europe.

Cone
detection

Cameras

LiDAR

GPS

IMU

Localisation
and mapping

Motion
planning

Velocity
control

Inverter

Service brake

Steering
motor

Computing unit

ECU

Steering
control

Figure 1.1: System overview of M19-D’s autonomous systems. Hardware is represented by grey
blocks, and software is represented by white blocks.

1.2 Research problem

M19-D is currently using an early implementation of a receding horizon planner (RHP) as its
motion planner. Due to being an early implementation, the main goal for the planner was to be
able to successfully finish missions, with lap time performance only being a secondary subgoal.
Therefore, the RHP was implemented using a relatively simplistic formulation, and an optimal
control library, ACADO Toolkit [1], was used as a high-level interface to solve the RHP problem.

This thesis aims to improve upon the previous RHP implementation for use on M19-D, and
ultimately improve the lap times that can be achieved by the autonomous systems. This was
achieved by exploring two key facts to the formulation of an RHP:

• Modelling: The plant model determines how accurately the RHP can predict its trajec-
tory, and therefore how much the vehicle can be pushed to the limits while ensuring the
RHP still knows how the vehicle will behave. The kinematic bicycle model is currently
used, but a more complex vehicle model such as a dynamic bicycle model may yield signif-
icant improvements. In addition to comparing vehicle models, other state representations

2

Chapter 1 – Introduction

such as using a different coordinate frame, or exploring new or different ways of enforc-
ing constraints, are also explored. Moreover, as time delay is a significant factor in the
performance of any controller, methods for compensating for it are also explored.

• Discretisation: The high-level RHP interface performs the conversion from optimal con-
trol problem to optimisation problem internally, known as discretisation or transcription.
However, this imposes certain restrictions on how the problem can be formulated, such
as enforcing a certain template on how the objective function must be defined. By dis-
cretising the problem by hand, the optimal control problem can be formulated much more
flexibly. Multiple discretisation schemes are explored and compared against each other in
this thesis, including successive linearisation, multiple shooting, and collocation schemes.

To achieve these aims, different modelling and discretisation methods were first prototyped and
evaluated in MATLAB in a simplified simulation environment. From these experiments, the best
performing formulation was implemented in C++, and evaluated in a more accurate hardware-
in-the-loop simulation. The performance of this RHP was benchmarked against MMS’s existing
motion planning implementations to verify whether the proposed RHP could yield improved lap
times over these existing implementations.

The key performance metric of the RHP was the total lap time achieved in the trackdrive
mission, as this would evaluate its performance over a variety of track features including straight
lines, hairpins and slaloms, as well as testing the robustness of the planner over a long racing pe-
riod. Racing around an unknown track as is required for the autocross mission is not considered
in the scope of this project.

1.3 Literature review

1.3.1 Motion planning

Autonomous vehicle racing is a growing field of research. Alongside FSD, the DARPA Grand
Challenge [2], DARPA Urban Challenge [3], Roborace [4] and the Indy Autonomous Challenge [5]
are examples of other autonomous racing competitions. Stanford’s autonomous Audi TTS has
also served as a testbench for autonomous racing research [6]. Apart from these examples
however, most other research in this field validates results using simulation [7, 8] or small-scale
model cars [9]. A key system in autonomous driving software architectures which is pivotal to
maximising the racing capabilities of autonomous vehicles is motion planning, which aims to
find a dynamically feasible trajectory, then follow this trajectory in real time in the presence of
noise, disturbances, and other uncertainties.

A common strategy for motion planning if the track is known is to precompute an optimal
racing line and velocity profile, which is then tracked in real time using an online motion plan-
ning algorithm [4, 5, 10]. Generating this optimal racing line typically involves formulating the
problem as an optimisation problem which minimises the lap time, which can be solved using

3

Chapter 1 – Introduction

traditional optimisation techniques [10] or alternative methods such as genetic algorithms [11].
Other approaches solve for the optimal racing line and velocity profile separately. These ap-
proaches typically involve solving for a minimum curvature racing line, after which a feasible
velocity profile constrained by the curvature of the path and maximum accelerations of the
vehicle is fit to the path [4, 12].

Several online motion planning methods have been proposed in literature. Kinematic meth-
ods such as pure pursuit [5] and Stanley control [13] use kinematic vehicle models to derive a
steering control law. These methods are computationally inexpensive and perform well at low
speeds. However, the performance degrades at higher speeds and accelerations when tire dy-
namics become nontrivial. Another class of controllers commonly used in autonomous racing are
optimal control techniques such as model predictive control (MPC) or RHP2 [9, 10]. Compared
to other control algorithms, the most significant advantage of optimal control is its ability to
implicitly incorporate state and control constraints into the problem formulation in real time.
Moreover, optimal control can be formulated using high-fidelity vehicle models, and can flexibly
choose how to define its objective function. These factors are particularly advantageous for au-
tonomous racing, where maximising lap time performance requires a thorough understanding of
the vehicle dynamics and handling limits of the vehicle. However, the main drawback of optimal
control is computational burden, as an optimisation problem needs to be solved online at every
time step.

1.3.2 Receding horizon planning

Optimal control views a control problem through the lens of an optimisation problem by solving
for a control trajectory which minimises a given objective function. The form of a typical
constrained continuous-time optimal control problem is shown below

min
ξ,u

J(ξ, u) = lN (ξ(tf)) +
∫ tf

t0
l(ξ(τ), u(τ)) dτ (1.1a)

subj. to r(ξ(t0), ξ(tf)) = 0 (boundary conditions) (1.1b)

ξ̇(t) = f(ξ(t), u(t)), t0 ≤ t ≤ tf (plant model) (1.1c)

g ≤ g(ξ(t), u(t)) ≤ g, t0 ≤ t ≤ tf (path constraints), (1.1d)

which consists of an objective function that is minimised (1.1a), boundary conditions which
define the initial and final states the trajectory must traverse between (1.1b), the plant model
which determines the dynamics of the system (1.1c), and path constraints which constrain the
state and controls within specified boundaries (1.1d).

Once the optimal control problem has been defined, it can be solved numerically using either

2As a note on terminology, the terms RHP and MPC are often used interchangeably in literature. However,
although sharing similar theories, techniques and formulations, this thesis makes a distinction such that the
solution of an RHP is tracked by a lower-level controller which acts as an intermediary between the RHP and the
actuator, while the solution of an MPC is directly used by the actuators.

4

Chapter 1 – Introduction

direct methods or indirect methods [14]. Direct methods discretise the continuous-time optimal
control problem in time, after which the problem can be transcribed as an optimisation problem
that can be solved by using a suitable optimisation algorithm, such as a quadratic program (QP),
sequential quadratic program (SQP) or interior-point (IP) method. Indirect methods instead
solve the original optimal control problem by finding the necessary conditions for optimality,
which results in a boundary value problem that can be solved numerically. While some works
use indirect methods to solve the offline optimal racing line problem [15], direct methods are
more popular in practice due to being more robust, implements path inequalities more easily,
and is an easier problem to formulate [16].

There are two main categories of discretisation methods for direct methods [17]:

• Sequential: Only the control variables are discretised. The state variables appearing in the
objective function and path constraints become a function of the control trajectory defined
by the plant model dynamics. This leads to a smaller but denser optimisation problem.
More complex derivatives need to be computed arising from the chain rule relationships
between the state and control variables. The most common sequential method is the direct
single shooting method.

• Simultaneous: Both the control variables and state variables are discretised. Equality con-
straints are enforced between neighbouring state variables to enforce the plant dynamics.
This leads to a larger but sparser optimisation problem which modern optimisation solvers
such as IPOPT [18] can efficiently solve. The most common simultaneous methods include
the direct multiple shooting method and the direct collocation method.

RHP is a type of optimal control which recomputes an optimal control trajectory at each time
step. This allows the open-loop optimal control formulation to inherit closed-loop properties
such as being robust to disturbances, state estimation errors and model errors. In the conversion
between optimal control problem and optimisation problem, a number of works utilise optimal
control libraries to perform the transcription internally using libraries such as ACADO [9] or
FORCES Pro [10]. Other works perform this transcription manually [19].

Another important classification of RHP formulations is whether the plant model is linear
or nonlinear, as this significantly impacts the computational burden of the problem. Linear
systems can be formulated as a QP, which are significantly easier to solve compared to nonlinear
systems which must be formulated as a nonlinear program (NLP). As vehicle dynamics are
highly nonlinear, a natural route is to retain the nonlinearities and formulate it as a nonlinear
RHP which is solved using an NLP [10]. An alternative approach to improve the real-time
feasibility of the RHP is to linearise the vehicle dynamics and nonlinear constraints at each time
step to achieve a linear time-varying (LTV) RHP, which allows the problem to be formulated as
a QP [7, 8, 20]. One work simplified the RHP even further by discarding the path constraints,
resulting in a least-squares problem which could be solved using linear algebra [19]. Alternatively,
a real-time iterative (RTI) scheme can be used, which achieves fast convergence by performing

5

Chapter 1 – Introduction

only a single optimisation step of a NLP by hot-starting from the time shifted previous optimal
solution [21].

1.3.3 Vehicle modelling

In autonomous driving, the two most common plant models used for RHP are the kinematic
bicycle model [22, 23] and dynamic bicycle model [9, 10, 19]. The kinematic bicycle model is
simpler and therefore computationally less expensive, and is accurate at low velocities. However,
particularly in the autonomous racing context, the dynamic bicycle model is often preferred
due to its superior accuracy at higher velocities and accelerations. The most important factor
in traditional race car dynamics is the acceleration of the vehicle, and the tyre forces that
achieve these. An important property of tyre forces is that the total combined longitudinal and
latitudinal tyre forces is constrained, such that the larger the latitudinal tyre force, the smaller
the longitudinal tyre force that can be achieved. This relationship is often referred to as the
tyre friction ellipse, and it is well known that to make the most of the vehicle’s performance,
the tyre forces must be as close to the friction ellipse boundary as possible [24]. Therefore, the
dynamic bicycle model’s ability to capture these important factors is expected to contribute to
superior racing performance.

However, the dynamic bicycle model is ill-defined at low velocities due to velocity being
on the denominator of the slip angle equation [25]. Techniques used to circumvent this issue
include using a hybrid kinematic-dynamic model which chooses which model to prioritise based
on the vehicle’s velocity [26], or adding a small constant to the culprit fraction’s denomina-
tor [27]. Another issue with the dynamic bicycle model is that the tyre dynamics are highly
nonlinear, particularly at the boundaries of the friction ellipse. This can lead to poor model
approximations if linearisation techniques are used. Proposed methods to prevent this issue for
LTV-RHP formulations typically involve imposing constraints on the slip angles to avoid the
highly nonlinear region [7].

For autonomous racing, another popular modelling technique is to use curvilinear coordinates
as opposed to Cartesian coordinates [10, 27], in which coordinates are defined relative to the
track path as opposed to a global coordinate system. This is a more intuitive formulation which
reflects the perception of real drivers, allows for a more natural expression for the progress made
along the track, and allows track boundaries to be expressed as a simple box constraint on the
lateral deviation of the path.

In addition to traditional vehicle modelling, recent works in autonomous racing have inves-
tigated learning-based techniques [28, 29]. In this formulation, data about the vehicle dynamics
obtained while the vehicle is driving is used to improve the plant model in real time.

6

Chapter 2

Plant Model

In this chapter, the plant models used for the RHP are explored. There are two primary vehicle
models that are considered: the kinematic bicycle model and the dynamic bicycle model. The
kinematic bicycle model is expected to be computationally less expensive, while the dynamic
bicycle model is expected to be more accurate particularly at higher vehicle speeds by considering
important tyre dynamics, and thus achieving better tracking performance. Modifications on
these vehicle models to improve the RHP performance are also presented.

2.1 Kinematic bicycle model

The kinematic bicycle model as depicted in Figure 2.1 is derived by combining the pair of front
and rear wheels together into a rigid single-track model, then assuming that the wheels travel
in the direction that they are pointed, vf and vr. The vehicle is defined by its mass m and
dimensions from its center of gravity (CoG) lf and lr. The state is defined as the coordinates
(X,Y) of the CoG, the vehicle yaw θ, and the velocity v of the CoG, all relative to a global
coordinate frame, as well as the front steering wheel angle δ. The control variables include the
acceleration a and steering rate ∆δ of the vehicle. This ∆u control formulation aims to provide
a regularising effect on the vehicle state for a suitably designed objective function that penalises
∆u [30].

The vehicle model is defined as the following nonlinear state equations

Ẋ = v cos(θ + α) (2.1a)

Ẏ = v sin(θ + α) (2.1b)

θ̇ = v

lr
sin(α) (2.1c)

v̇ = a (2.1d)

δ̇ = ∆δ, (2.1e)

7

Chapter 2 – Plant Model

where the slip angle of the vehicle α is defined as

α = arctan
(

lr
lr + lf

tan(δ)
)
. (2.2)

δ

lr

lf

vr

vf

v

α

Y

X θ

Figure 2.1: Kinematic bicycle model

2.2 Dynamic bicycle model

The dynamic bicycle model as depicted in Figure 2.2 is a more complex single-track model which
is derived by considering tyre forces and kinetic equations. Longitudinal tyre forces arising from
slip from the front tyres, as well as aerodynamic forces, are assumed to be negligible. In addition
to the vehicle parameters introduced in Section 2.1, the dynamic bicycle model also defines the
vehicle’s yaw moment of inertia I. As opposed to the kinematic bicycle model, the dynamic
bicycle model breaks up the state velocity into the longitudinal ẋ and latitudinal ẏ components,
defined in the vehicle’s inertial frame, and also introduces the yaw rate ω as a state variable.
The control variables remain similar, but uses the driving force Fx, or rear wheel longitudinal
tyre force, instead of acceleration.

The vehicle model is defined as the following nonlinear state equations

Ẋ = ẋ cos(θ)− ẏ sin(θ) (2.3a)

Ẏ = ẋ sin(θ) + ẏ cos(θ) (2.3b)

θ̇ = ω (2.3c)

ẍ = 1
m

(Fx − Fcf sin(δ) +mẏω) (2.3d)

ÿ = 1
m

(Fcr + Fcf cos(δ)−mẋω) (2.3e)

ω̇ = 1
I

(lfFcf cos(δ)− lrFcr) (2.3f)

δ̇ = ∆δ. (2.3g)

8

Chapter 2 – Plant Model

The front and rear lateral tyre forces are defined using the Pacejka Magic Formula [31], where
the parameters A,B,C,D and E define the shape of the tyre curve. The shape of this curve
can be seen in Figure 3.2, and is defined by

Fc(·) = Fz(·)D sin
(
C arctan

(
Bα(·) − E

(
Bα(·) − arctan

(
Bα(·)

))))
, (2.4)

where the slip angles of the tyres are defined as

αf = δ − arctan
(
ẏ + lfω

ẋ

)
(2.5a)

αr = − arctan
(
ẏ − lrω
ẋ

)
. (2.5b)

The weight distribution between front and rear tyres is estimated using a simple constant
moment balance about the centre of gravity. Note that this simplification ignores load transfer
and aerodynamic downforce effects typically experienced by racecars.

Fzf = lr
lf + lr

mg (2.6a)

Fzr = lf
lf + lr

mg (2.6b)

δ

θ

Fcf

Fx
Fcr

y
x

lr

lfvr

αr

vf
αfY

X

Figure 2.2: Dynamic bicycle model

2.2.1 Low-velocity compensation

The dynamic bicycle model is known to have numerical issues at low velocities as the longitudinal
velocity ẋ appears on the denominator for the equations for the slip angles (2.5), causing tyre
forces to become singular [25]. Although in racing scenarios the vehicle velocity ideally avoids
this low-velocity region, it is still important for starting the car from its initial stationary state,
as well as navigating around sharp corners at lower speeds [26].

9

Chapter 2 – Plant Model

−1 −0.5 0 0.5 1−2

−1

0

1

2

ẏ (m/s)

F
c

(k
N

)

−1 −0.5 0 0.5 1

−300

−200

−100

0

ẏ (m/s)

∂
F
c

∂
ẏ

(k
N

s/
m

)

ẋ = 0.1 m/s
ẋ = 1.0 m/s
ẋ = 10.0 m/s

Figure 2.3: Lateral tyre force (left) and its partial derivative with respect to lateral velocity
(right) at varying longitudinal velocities when ω = 0.

The singular nature of tyre forces at low velocities manifests as a sharp step-like function as
seen in Figure 2.3. This results in a similar issue to the exploding gradient problem found in
machine learning literature [32], where the significantly larger gradient can result in instability
in the gradient descent algorithm used for optimisation.

To circumvent this, the following modification was made to the longitudinal velocity in the
slip angle formula denominator in (2.5) to avoid the singularity.

ẋ′ = ẋ+ ẋmine
−ẋ/ẋmin (2.7)

As opposed to a constant offset or piecewise linear modification, this formula was chosen as it
is smooth, strictly increasing, and the additional offset term decays at higher velocities. A floor
of ẋmin = 5 m/s was found to work well.

2.3 Curvilinear coordinate system

Both the kinematic and dynamic bicycle models were converted to curvilinear coordinates to
define the vehicle state relative to the track centreline, as depicted in Figure 2.4. The curvilinear
coordinate equations of motion are given in (2.8) for the kinetmatic bicycle model (left) and
dynamic bicycle model (right), where s is the arclength travelled along the path, n is the lateral
deviation from the path, µ is the angular deviation from the path, and κ(s) is the curvature of
the path. These equations are derived by assuming that κ(s) is piecewise constant [33], so any

10

Chapter 2 – Plant Model

derivatives of these equations will similarly treat κ(s) as a constant.

ṡ = v cos(µ+ α)
1− nκ(s) , ṡ = ẋ cos(µ)− ẏ sin(µ)

1− nκ(s) (2.8a)

ṅ = v sin(µ+ α), ṅ = ẋ sin(µ) + ẏ cos(µ) (2.8b)

µ̇ = v

lr
sin(α)− v cos(µ+ α)

1− nκ(s) κ(s), µ̇ = ω − ẋ cos(µ)− ẏ sin(µ)
1− nκ(s) κ(s) (2.8c)

s

n

µ

...

..
.

θ

Y

X

Figure 2.4: Curvilinear coordinate system definition

2.3.1 Path formulation

To represent the state in curvilinear coordinates, the track must be expressed as a continuous
function. Smooth paths are desired so that jerky motions and unnecessarily high accelerations
are avoided [34]. A common way a smooth continuous path is represented for trajectory planning
is by using splines. In particular, a cubic spline is able to achieve a C2 continuity, which
is required for the curvature κ(s) to be continuous. Using Bezier curves to define the cubic
segments, the path can be represented as a parametric piecewise spline function {Xp, Yp} with
Np segments of the form

Xp,i(σ) = ax,i(1− σ)3 + 3bx,i(1− σ)2σ + 3cx,i(1− σ)σ2 + dx,iσ
3

Yp,i(σ) = ay,i(1− σ)3 + 3by,i(1− σ)2σ + 3cy,i(1− σ)σ2 + dy,iσ
3

, σ ∈ [0, 1]. (2.9)

To solve for the the spline coefficients ai, bi, ci and di for a set of points pi, a system of linear
equations can be derived through C0, C1 and C2 continuity conditions between neighbouring
segments. However, naively solving the system requires the inversion of a large 4Np×4Np matrix,
which is undesirable in situations when the spline needs to be computed online. Instead, a more
efficient method inspired by [35] is presented.

The following derivation will consider fitting Np points to an arbitrary spline, and is a
technique that is applied for both the Xp and Yp parametric spline components independently.
As the track is assumed to be a closed loop, for the sake of brevity, the set of points and

11

Chapter 2 – Plant Model

spline segments are defined to be periodic by abuse of notation such that pi = pi+Np , Xp,i(t) =
Xp,i+Np(t) and Yp,i(t) = Yp,i+Np(t).

Firstly, the beginning and end of each spline segment is defined to be between two neigh-
bouring points pi and pi+1. The Bezier cubic expression allows us to immediately define two of
the spline coefficients

ai = pi, i = 0, . . . , Np − 1 (2.10a)

di = pi+1, i = 0, . . . , Np − 1. (2.10b)

Equations obtained from the C1 and C2 conditions give the following conditions

di + ci+1 = 2pi, i = 0, . . . , Np − 1 (2.11a)

ci − 2di + 2ci+1 − di+1 = 0, i = 0, . . . , Np − 1. (2.11b)

Equations (2.11) are combined to obtain

ci−1 + 4ci + ci+1 = 4pi + 2pi+1, i = 0, . . . , Np − 1. (2.12)

Equation (2.12) can be expressed as the following tridiagonal matrix with periodic boundary
conditions 

4 1 1
1 4 1

1 4 1
.

1 4 1
1 4 1

1 1 4





c0

c1

c1
...

cNp−3

cNp−2

cNp−1


=



4p0 + 2p1

4p1 + 2p2

4p2 + 2p3
...

4pNp−3 + 2pNp−2

4pNp−2 + 2pNp−1

4pNp−1 + 2p0


.

(2.13)

Systems of equation involving diagonally dominant tridiagonal matrices can be solved efficiently
using the Thomas algorithm [36]. For tridiagonal matrices with periodic boundary conditions
such as (2.13), the Sherman-Morrison algorithm can first be used to modify the problem to
be solvable using the Thomas algorithm [37]. Once the system has been solved, the remaining
coefficients di can be solved using (2.11a).

Once the spline has been solved, it is reparametrised as a function of s by interpolating the
spline at evenly spaced arc lengths, and refitting a spline to the interpolated points [38]. The
parameterisation error improves the smaller the arc length step size, but at the cost of overfitting
the curve.

Once the final arc-length parameterised spline is defined, the curvature of the path is therefore

12

Chapter 2 – Plant Model

given by

κ(s) = Ẋp(s)Ÿp(s)− Ẍp(s)Ẏp(s)(
Ẋp(s)2 + Ẏp(s)2

)3/2 . (2.14)

2.3.2 Coordinate transform

As the state estimate ξ̂ from the SLAM algorithm is given in Cartesian coordinates, a coordinate
transform will be required to transform it into curvilinear coordinates. To do this, the closest
point on the path to the vehicle needs to be found to find ŝ. The other two states n̂ and µ̂ can
then be found as

ŝ = arg min
s

D(s), D(s) =
(
X̂ −Xp(s)

)2
+
(
Ŷ − Yp(s)

)2
(2.15a)

n̂ =
−Ẏp(ŝ)

(
X̂ −Xp(ŝ)

)
+ Ẋp(ŝ)

(
Ŷ − Yp(ŝ)

)
√
Ẋp(ŝ)2 + Ẏp(ŝ)2

(2.15b)

µ̂ = θ̂ − atan2
(
Ẏp(ŝ), Ẋp(ŝ)

)
. (2.15c)

Common methods to solve the closest-point-on-path problem (2.15a) typically involve some
variation of the Newton-Raphson root finding method [39].

ŝ∗i+1 = ŝ∗i −
D′(ŝ∗i)
D′′(ŝ∗i)

(2.16)

The main issues with this approach are slow convergence or non-global optimality, typically due
to bad initialisations [39]. However, due to the nature of our application, the previous solution
for ŝ will always be a good initialisation candidate.

2.4 Actuator modelling

The RHP control outputs interact with lower-level PID controllers, which in turn interact with
the inverter, braking, and steering actuators. These factors manifest as a transient response in
the vehicle’s velocity and steering angle. In applications such as chemical plants, these transient
responses are typically trivial due to the long prediction horizons used relative to the response
times. However, in the autonomous racing context, the transient response represents a significant
time delay which can lead to controller instability if unaccounted for [40].

To account for this time delay component, the transient responses were modelled and incor-
porated into the vehicle dynamics. While it is possible to incorporate a full powertrain model
to capture these dynamics, it would increase the complexity of the problem. Instead, a simple
first order transient response was used, which is able to capture the important characteristics of
the transient delay characteristics. The RHP controls were subsequently defined as the target

13

Chapter 2 – Plant Model

setpoints u = [vt δt]T , and the dynamics were modified to reflect this as

∆δ = Kδ(δt − δ) (2.17a)

Fx = mKv(vt − ẋ), (2.17b)

where Kδ and Kv represent the equivalent gains of a proportional controller.

0 2 4 6 8 100

2

4

6

Time (s)

Ve
lo

ci
ty

(m
/s

)

Target
Response

0 0.2 0.4 0.6 0.8 10

5

10

Time (s)
St

ee
rin

g
an

gl
e

(◦
)

Target
Response

Figure 2.5: Experimental data of the velocity (left) and steering angle (right) step responses of
M19-D.

2.5 Summary

A final vehicle model can be obtained by combining the equations shown in the previous sections.
For example, the vehicle model for a dynamic bicycle model in curvilinear coordinates with
transient actuator responses is shown in (2.18), which was ultimately used in the final RHP
formulation. The corresponding state vector is ξ = [s n µ ẋ ẏ ω δ]T , and the control vector
is u = [vt δt]T .

ṡ = ẋ cos(µ)− ẏ sin(µ)
1− nκ(s) (2.18a)

ṅ = ẋ sin(µ) + ẏ cos(µ) (2.18b)

µ̇ = ω − ẋ cos(µ)− ẏ sin(µ)
1− nκ(s) κ(s) (2.18c)

ẍ = 1
m

(mKv(vt − ẋ)− Fcf sin(δ) +mẏω) (2.18d)

ÿ = 1
m

(Fcr + Fcf cos(δ)−mẋω) (2.18e)

ω̇ = 1
I

(lfFcf cos(δ)− lrFcr) (2.18f)

δ̇ = Kδ(δt − δ) (2.18g)

14

Chapter 3

Optimal Planning for Racing

This chapter presents the formulations of optimal control problems used for motion planning.
The first is the RHP problem, in which a finite horizon optimal control problem is solved online
at each time step in a receding horizon fashion to calculate a trajectory which optimises for a
given objective. The second is the optimal racing line problem, where a periodic time-optimal
reference trajectory is computed offline to provide a reference trajectory for the RHP. In the
following sections, ‖·‖nW represents the W -weighted n-norm function.

3.1 Receding horizon planning

Consider the nonlinear system f :Rnξ×Rnu → Rnξ defined by the models presented in Chapter 2

ξ̇(t) = f(ξ(t), u(t)), (3.1)

where ξ ∈ Rnξ and u ∈ Rnu represent the state and control vectors respectively. The RHP is
formulated as a reference tracking optimal controller with the following objective function

J(ξ, u, t0) = ‖ξ(tf)− ξr(tf)‖2Qf +
∫ tf

t0
‖ξ(τ)− ξr(τ)‖2Q + ‖e(τ)‖2R dτ, (3.2)

where ξr ∈ Rnξ is the state reference trajectory, e(t) = [Fx(t) ∆δ(t)]T represents the effort
exerted by the vehicle, and Q, Qf ∈ Rnξ×nξ and R ∈ Rnu×nu are state, terminal state, and
control weight positive semi-definite diagonal matrices respectively. The objective function is
constructed to penalise deviations from the reference trajectory, while an effort minimising
regularisation term is included to have a smoothing effect on the solution trajectory. A terminal
penalty is included to help enforce stability [41].

Path constraints g(ξ(t), u(t)):Rnξ ×Rnu → Rng consisting of a combination of state, control
and functional constraints shown in (3.3) are enforced. Upper and lower bounds on quantities

15

Chapter 3 – Optimal Planning for Racing

are expressed as (·) and (·) respectively.

n ≤ n(t) ≤ n (3.3a)

δ ≤ δ(t) ≤ δ (3.3b)

0 ≤ ẋ(t) (3.3c)

∆δ ≤ ∆δ(t) ≤ ∆δ (3.3d)(
Fx(t)
mal

)2
+
(
Fcr(t)
mac

)2
≤ 1 (3.3e)

These constraints describe the track boundary constraints (3.3a), steering angle limits (3.3b),
prevention from backwards movement (3.3c), slew rate of the steering angle (3.3d), and tyre
friction ellipse constraints (3.3e). If actuator transient response as described in Section 2.4 is
modelled, then (3.3b) and (3.3c) can be replaced with constraints on δt and vt respectively.

Overall, the RHP problem is formulated as

min
ξ,u

J(ξ, u, t0) (3.4a)

subj. to ξ(t0) = ξ̂ (3.4b)

ξ̇(t) = f(ξ(t), u(t)), t0 ≤ t ≤ tf (3.4c)

g ≤ g(ξ(t), u(t)) ≤ g, t0 ≤ t ≤ tf . (3.4d)

Once the RHP (3.4) has been discretised using a method described in Chapter 4, it is solved
in a receding horizon fashion. This involves repeatedly solving the RHP at each discrete time
step, where at each iteration, the prediction horizon [t0, tf] is shifted forwards by a time step
[t0 + ∆t, tf + ∆t], resulting in an updated state estimate ξ̂ and reference trajectory ξr that the
RHP is solved from. The controls at the first time step of the solved optimal control trajectory
u∗0(i) are then used as target setpoints for the lower-level PID controllers before the optimal
trajectory is updated in the next iteration. This algorithm is visualised in Figure 3.1.

Past Future

i i+N

u∗(i)

ξr(i)
ξ∗(i)

u∗0(i)

Prediction horizon

Figure 3.1: Receding horizon planning algorithm.

16

Chapter 3 – Optimal Planning for Racing

3.1.1 Soft constraints

It can be advantageous to represent constraints involving state variables such as (3.3a) and (3.3e)
as soft constraints to allow for an additional degree of flexibility in situations when the problem
would otherwise be infeasible, and no solution exists which would satisfy the constraints [41].
To do this, slack variables ε(t) = [εn(t) εa(t)]T are introduced to modify the constraints such
that

n ≤ n(t) + εn(t) ≤ n (3.5a)(
Fx(t))
mal

)2
+
(
Fcr(t)
mac

)2
+ εa(t) ≤ 1. (3.5b)

To ensure that in situations when the original problem would be feasible that the optimal
solution can be recovered, ∞-norm penalties on the slack variables weighted by q(·) ∈ R+ are
added to the cost function [42].

Jε(ξ, u, ε, t0) = J(ξ, u, t0) + qn‖εn(t)‖∞ + qa‖εa(t)‖∞ (3.6)

The ∞-norm slack variable penalty qn‖εn(t)‖∞ + qa‖εa(t)‖∞ can be treated similarly to the
Chebyshev approximation problem or minmax approximation problem, and formulated in the
following linear program (LP)-like form [43]

min
ε
‖ε‖1q = qnεn + qaεa (3.7a)

subj. to n(t)− εn ≤ n, t0 ≤ t ≤ tf (3.7b)

n(t) + εn ≥ n t0 ≤ t ≤ tf (3.7c)(
Fx(t))
mal

)2
+
(
Fcr(t)
mac

)2
− εa ≤ 1 t0 ≤ t ≤ tf (3.7d)

εn ≥ 0 (3.7e)

εa ≥ 0, (3.7f)

where εn, εa ∈ R+ are converted to scalar values, and q ∈ Rnε is the slack variable weight vector.
This presents a secondary advantage of the ∞-norm penalty, where by using the reformulation
shown in (3.7), the slack variables are condensed from a continuous function to a scalar variable.
Once the system is discretised, this corresponds to a significant reduction in the number of
optimisation variables, where for each constraint, instead of requiring N slack variables for
every time step, a single slack variable can be used for the entire horizon.

17

Chapter 3 – Optimal Planning for Racing

After introducing soft constraints, the optimal control problem becomes

min
ξ,u,ε

Jε(ξ, u, ε, t0) = J(ξ, u, t0) + ‖ε‖1q (3.8a)

subj. to ξ(t0) = ξ̂ (3.8b)

ξ̇(t) = f(ξ(t), u(t)), t0 ≤ t ≤ tf (3.8c)

g ≤ gε(ξ(t), u(t), ε) ≤ g, t0 ≤ t ≤ tf (3.8d)

ε ≥ 0, (3.8e)

where gε is the soft constraint-modified constraint function.

3.1.2 Friction ellipse

The friction ellipse constraint shown in (3.3e) works best for nonlinear discretisation using the
dynamic bicycle model. Alternative formulations for the friction ellipse for other modelling and
discretisation schemes are shown in the following sections.

Kinematic bicycle model

The constraint shown in (3.3e) requires the tyre forces to be modelled. If a kinematic bicycle
model is used, an estimation of these forces is required. This can be done through the following
approximation of longitudinal and lateral accelerations [22]

al ≤
Fx(t)
m
≤ al (3.9a)

ac ≤
v(t)2δ(t)
lf + lr

≤ ac. (3.9b)

As the lateral acceleration calculated in (3.9b) is just an approximation, the bounds on ac must
be set more conservatively compared to the true vehicle capabilities.

Linearisation

Another instance when the friction ellipse needs to be reformulated is in linear discretisation
schemes. In this case, it can be advantageous to linearise the ellipse beforehand to create a
convex set using Na linearised constraints [8]. As the tyre curve is highly nonlinear at the
boundaries of the friction ellipse, an additional constraint on the front and rear slip angles of
the tyres is enforced to ensure the vehicle remains within the linear regions of the lateral tyre
force function [7].

18

Chapter 3 – Optimal Planning for Racing

These constraints are visualised in Figure 3.2 and formulated as

Ai

[
Fcr(t)
Fx(t)

]
− bi − εa ≤ 0, i = 1, . . . , Na (3.10a)

αf (t)− εf ≤ αf (3.10b)

αf (t) + εf ≥ αf (3.10c)

αr(t)− εr ≤ αr (3.10d)

αr(t) + εr ≥ αr (3.10e)

εa ≥ 0, εf ≥ 0, εr ≥ 0. (3.10f)

The slip angle constraints are also formulated as soft constraints. Therefore, additional slack
variables are added such that ε(t) = [εn εa εf εr]T .

al 0 al

ac

0

ac

ac (m/s2)

a
l

(m
/s

2)

α 0 α

Fc

0

Fc

α (rad)

F
c

(N
)

Figure 3.2: Linearised friction ellipse constraints (left) and lateral tyre force modelled using the
Pacejka Magic Formula with slip angle constraints to ensure the vehicle operates in the linear
region of the tyre force (right).

3.2 Time optimal planning

The RHP problem only considers a small horizon of the entire track. This may lead to suboptimal
solution trajectories where there may be important information about the track beyond the
considered horizon, such as an upcoming hairpin. To circumvent the issue of the RHP being
blind to the track past the current time horizon, assuming that the track layout is known
beforehand, an optimal racing trajectory can be precomputed offline, and act as the reference
trajectory the RHP tracks [10].

To do this, the problem is reformulated from time-domain to spatial-domain, so that time
t can be treated as a variable optimisation parameter. Instead, s now defines the horizon the

19

Chapter 3 – Optimal Planning for Racing

problem is optimised over, and is therefore no longer an optimsation variable and can be dropped
from the state vector ξ. As the time optimal planner is run offline, accuracy is more important
than computational complexity, so the dynamic bicycle model presented in (2.18) is used as the
plant model. Overall, the state vector is redefined as ξ = [n µ ẋ ẏ ω δ]T . Note that time
is not included as a state variable, as it can be expressed purely in terms of the existing state
variables as ∆t = ∆s/ṡ, where ṡ is given by (2.8a).

The objective function is reformulated to minimise the time taken to navigate the track,
while retaining regularising terms on both the state and control variables

Jε(ξ, u, ε) =
∫ L

0

1
ṡ

+ ‖ξ(s)‖2Q + ‖e(s)‖2R ds+ ‖ε‖1q , (3.11)

where L is the total length of the track. The plant dynamics are reformulated in terms of s
instead of t by using the chain rule

ξ̇(s) = dξ

ds
= dξ

dt

dt

ds
= 1
ṡ
f(ξ(s), u(s)). (3.12)

The plant model Jacobians are therefore given by

∂

∂ξ
(ξ̇(s)) = − 1

ṡ2 f(ξ(s), u(s))∂ṡ
∂ξ

+ 1
ṡ

∂f

∂ξ
(3.13a)

∂

∂u
(ξ̇(s)) = 1

ṡ

∂f

∂u
. (3.13b)

As the track is closed and periodic, a final constraint is enforced to ensure periodicity of the opti-
mised path. All path constraints gε(ξ(s), u(s), ε) are identical to those formulated in Section 3.1.
Overall, the optimal racing line problem is formulated as

min
ξ,u,ε

Jε(ξ, u, ε) (3.14a)

subj. to ξ(0) = ξ(L) (3.14b)

ξ̇(s) = 1
ṡ
f(ξ(s), u(s)), 0 ≤ s ≤ L (3.14c)

g ≤ gε(ξ(s), u(s), ε) ≤ g, 0 ≤ s ≤ L (3.14d)

ε ≥ 0. (3.14e)

20

Chapter 4

Discretisation

Once the optimal control problem has been defined, it needs to be discretised to be in a form
able to be solved by optimisers. This involves discretising the time horizon into N discrete
intervals spaced evenly by a time step ∆t to achieve a finite number of optimisation variables
that can be solved for. Multiple discretisation methods were explored, including various linear
and nonlinear schemes. For the notation that will be used, unless otherwise stated, a plain
variable ξ refers to a trajectory or sequence of vectors, a subscript ξk refers to the k-th vector in
the trajectory, and an asterisk ξ∗(i) refers to the optimal trajectory evaluated at the i-th time
step. Unless otherwise specified, a vector of vectors denoted as v = [v1 v2 . . . vN]T is an RNnv

column stacked vector.

4.1 Successive linearisation

By linearising the nonlinear dynamics of the vehicle model, the problem can be solved more easily
by QP solvers at the cost of losing important nonlinearities of the original plant model. To per-
form this transcription method, the RHP is first discretised, which introduces the discrete state
trajectory vector ξ = [ξ1 ξ2 . . . ξN]T and control trajectory vector u = [u0 u1 . . . uN−1]T ,
and discretises the objective function as

Jε(ξ, u, ε) = ‖ξN − ξr,N‖2Qf +
N−1∑
k=1
‖ξk − ξr,k‖2Q +

N−1∑
k=0
‖ek‖2R + ‖ε‖1q . (4.1)

An LTV sequential single shooting scheme is then used to transcribe and linearise the RHP
problem. This involves expressing the optimisation variables purely as the control trajectory u,
which requires the state trajectory ξ to be approximated as a linear function of u. This results

21

Chapter 4 – Discretisation

in the QP

min
uε

1
2u

T
ε Huε + fTuε (4.2a)

subj. to ξ0 = ξ̂ (4.2b)

γ ≤ Guε ≤ γ (4.2c)

ε ≥ 0, (4.2d)

where the control vector and slack variables are combined into a single optimisation variable
uε = [u ε]T .

To achieve the QP formulation (4.2), consider the problem of transforming the objective
function into a quadratic function solely in terms of uε. By introducing a padding 0ε ∈ Rnε as
a zero column vector with a length equal to the number of slack variables, and redefining the
error vector correspondingly as eε = [e 0ε]T , the objective function (4.1) can be rewritten as
the following matrix equation

Jε(ξ, uε) = (ξ − ξr)T Q̃(ξ − ξr) + eTε R̃eε + q̃Tuε, (4.3)

where Q̃ = blockdiag(Q, . . . , Q,Qf), R̃ = blockdiag(R, . . . , R, 0ε) and q̃ = [0 . . . 0 q]T . Now
consider the plant model

ξ̇k = f(ξk, uk). (4.4)

The model can be linearised by taking the first order Taylor series expansion at some linearisation
trajectory ξl = [ξl,0 . . . ξl,N−1]T , ul = [ul,0 . . . ul,N−1]T as

ξ̇k ≈ f(ξl,k, ul,k) + ∂f

∂ξ

∣∣∣∣ξ=ξl,k
u=ul,k

(ξk − ξl,k) + ∂f

∂u

∣∣∣∣ξ=ξl,k
u=ul,k

(uk − ul,k). (4.5)

This can be rearranged into the affine expression

ξ̇k = Akξk +Bkuk + dk, (4.6)

where

Ak = ∂f

∂ξ

∣∣∣∣ξ=ξl,k
u=ul,k

, Bk = ∂f

∂u

∣∣∣∣ξ=ξl,k
u=ul,k

(4.7a)

dk = f(ξl,k, ul,k)−Akξl,k −Bkul,k. (4.7b)

Using first order Euler integration, consecutive states can therefore be represented as

ξk+1 = Ãkξk + B̃kuk + d̃k, (4.8)

22

Chapter 4 – Discretisation

where Ãk = I+Ak∆t, B̃k = Bk∆t and d̃k = dk∆t. Alternative integration schemes are discussed
in Section 4.4.

The linearisation trajectory that is used is the previously solved optimal trajectory ξl =
ξ∗(i − 1) and ul = u∗(i − 1). As this linearisation trajectory changes at every time step, the
system is referred to as an LTV system, and results in an LTV-RHP. Similar to the motivation
behind hot-starting discussed in Section 5.2, this approach is expected to work well as the
previous optimal trajectory should be a good estimation for what the current optimal trajectory
will be. This method also bears resemblance to the RTI approach, and therefore shares similar
convergence properties [44].

Once the system has been linearised, the state trajectory ξ needs to be formulated as a
function of controls uε. This can be done by iteratively applying (4.8) from a given initial
condition ξ0, which is a similar method to the batch approach method to solve linear quadratic
regulators [45]. This can be expressed as the following matrix equation


ξ1

ξ2
...
ξN

 =



Ã0

Ã1Ã0
...

N−1∏
k=0

Ãk


︸ ︷︷ ︸

Ã

x0 +



B̃0 0 . . . 0 0Tε
Ã0B̃0 B̃1 . . . 0 0Tε

...
...

...
N−1∏
k=1

ÃkB̃0

N−1∏
k=2

ÃkB̃1 . . . B̃N−1 0Tε


︸ ︷︷ ︸

B̃



u0

u1
...

uN−1

ε



+



I 0 . . . 0
Ã1 I . . . 0
...

...
N−1∏
k=1

Ãk

N−1∏
k=2

Ãk . . . I




d̃0

d̃1
...

d̃N−1


,︸ ︷︷ ︸

d̃

(4.9)

which can be re-expressed as
ξ = Ãξ0 + B̃uε + d̃. (4.10)

A complication arises if the actuator transient response from Section 2.4 is used, as the effort
term eε needs to be expressed as a difference between control and state variables, which is not
straightforward to do when using a sequential discretisation scheme. This could be done by
using a sparse matrix to map ẋ and δ from the state trajectory ξ. However, this results in large
matrix operations which is undesirable for real time applications. Instead, a simplification is
made such that eε is defined relative to the initial state for the entire horizon.

eε = [u 0ε]T − u0, u0 = [ẋ0 δ0 . . . ẋ0 δ0 0ε]T (4.11)

Overall, given (4.10) and (4.11), the original objective function (4.3) can be expressed as the

23

Chapter 4 – Discretisation

following multivariable quadratic equation

Jε(uε) = uTε (B̃T Q̃B̃ + R̃)uε + 2(Ãξ0 + d̃− ξr)T Q̃B̃uε − 2uT0 R̃uε
+ (Ãξ0 + d̃− ξr)T Q̃(Ãξ0 + d̃− ξr) + uT0 R̃u0 + q̃Tuε.

(4.12)

Which implies that the QP objective function (4.2a) Hessian H and gradient f are

H = 2(B̃T Q̃B̃ + R̃) (4.13a)

f = 2(B̃T Q̃(Ãξ0 + d̃− ξr)− R̃u0) + q̃. (4.13b)

4.1.1 Constraint linearisation

QP solvers are typically limited to linear inequality constraints of the form shown in (4.2c).
Therefore, the path constraints gε(ξ, u, ε) specified in Chapter 3 need to be discretised and
linearised as well. To do this, the constraint function is linearised at each time step about the
same linearisation trajectory ξl, ul as the plant model linearisation scheme.

gk ≈ gε(ξl,k, ul,k, 0ε) + ∂gε
∂ξ

∣∣∣∣ξ=ξl,k
u=ul,k

(ξk − ξl,k) + ∂gε
∂u

∣∣∣∣ξ=ξl,k
u=ul,k

(uk − ul,k) + ∂gε
∂ε

ε (4.14)

This is rearranged into the following affine expression

gk = Ckξk +Dkuk + Eε+ wk, (4.15)

where

Ck = ∂gε
∂ξ

∣∣∣∣ξ=ξl,k
u=ul,k

, Dk = ∂gε
∂u

∣∣∣∣ξ=ξl,k
u=ul,k

, E = ∂gε
∂ε

(4.16a)

wk = gε(ξl,k, ul,k, 0ε)− Ckxl,k −Dkul,k. (4.16b)

By stacking the constraints at each time step together, the following matrix constraint equation
is obtained


g0
...

gN−1

 =


C0

. . .
CN−1


︸ ︷︷ ︸

C̃


ξ1
...
ξN

+


D0 E

.
DN−1 E


︸ ︷︷ ︸

D̃


u0
...

uN−1

ε

+


w0
...

wN−1


,︸ ︷︷ ︸

w̃

(4.17)

which can also be expressed as
g = C̃ξ + D̃uε + w̃. (4.18)

24

Chapter 4 – Discretisation

Substituting the linearised state trajectory ξ found in (4.10), the following expression is obtained

g = (C̃B̃ + D̃)uε + C̃(Ãξ0 + d̃) + w̃. (4.19)

Therefore, the QP constraint matrix G and bounds γ, γ can be expressed as

G = C̃B̃ + D̃ (4.20a)

γ = g − C̃(Ãξ0 + d̃)− w̃ (4.20b)

γ = g − C̃(Ãξ0 + d̃)− w̃. (4.20c)

4.2 Multiple shooting

Unlike the successive linearisation method, the RHP can alternatively retain its nonlinearities
and be formulated as a nonlinear RHP. To do this, simultaneous methods which use both the
state trajectory and control trajectory to define the optimisation variables are used to discretise
the RHP. As opposed to the sequential method used for successive linearisation, the advantage of
simultaneous methods is that derivatives are much simpler to calculate as the chain rule between
states and controls is not required. Secondly, this discretisation method allows an initial state
trajectory to be used to initialise the optimiser as opposed to just an initial control trajectory.
The trade-off is that the number of optimisation variables increases significantly. However the
resulting problem also becomes sparse, which modern optimisers such as IPOPT [18] can solve
efficiently.

Multiple shooting is a type of simultaneous method which assumes a first-order hold control
trajectory, and estimates the state in the next time step using at each node using explicit Runge-
Kutta (RK) schemes. The augmented variable Ξk = [ξk+1 uk]T is introduced such that the
optimisation variable can be defined as Ξ = [Ξ0 . . . ΞN−1 ε]T . Equality constraints (4.21c)
are then enforced to ensure continuity of the state trajectory using this shooting prediction.

Overall, the multiple shooting problem using Euler integration is expressed as

min
Ξ

Jε(Ξ) = ‖ξN − ξr,N‖2Qf +
N−1∑
k=1
‖ξk − ξr,k‖2Q +

N−1∑
k=0
‖ek‖2R + ‖ε‖1q (4.21a)

subj. to ξ0 = ξ̂ (4.21b)

ξk+1 = ξk + f(ξk, uk)∆t, k = 0, . . . , N − 1 (4.21c)

g ≤ gε(ξk, uk, ε) ≤ g, k = 0, . . . , N − 1 (4.21d)

ε ≥ 0. (4.21e)

Alternative integration schemes are discussed in Section 4.4.
To define the optimisation problem for the NLP, in addition to the objective function Jε(Ξ),

the objective function gradient ∇Jε(Ξ), constraint function c(Ξ), constraint function Jacobian

25

Chapter 4 – Discretisation

∇c(Ξ), and Hessian of the Lagrange equation must also be specified. These matrices are dis-
cussed in more detail in Appendix A.1. For the Hessian of the Lagrange equation, the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton method is employed [18].

4.3 Trapezoidal collocation

The collocation method is another simultaneous discretisation method which uses piecewise poly-
nomial splines to approximate the control trajectories between collocation points, and implicit
RK methods to integrate the plant model.

The trapezoidal collocation method assumes a piecewise linear control scheme, which can
be integrated using the trapezoidal method (4.22c), resulting in a piecewise quadratic state
trajectory [46]. The optimisation variable is modified to include discretised state and control
points at every collocation point including at the initial time step, such that Ξk = [ξk uk]T and
Ξ = [Ξ0 . . . ΞN ε]T .

Overall, the trapezoidal collocation problem is expressed as

min
Ξ

Jε(Ξ) = 1
2
(
‖ξN−1 − ξr,N−1‖2Qf + ‖ξN − ξr,N‖2Qf

)
+
N−2∑
k=0

1
2
(
‖ξk − ξr,k‖2Q + ‖ξk+1 − ξr,k+1‖2Q

)
(4.22a)

+
N−1∑
k=0

1
2
(
‖ek‖2R + ‖ek+1‖2R

)
+ ‖ε‖1q

subj. to ξ0 = ξ̂ (4.22b)

ξk+1 = ξk + 1
2(f(ξk, uk) + f(ξk+1, uk+1))∆t, k = 0, . . . , N − 1 (4.22c)

g ≤ gε(ξk, uk, ε) ≤ g, k = 0, . . . , N (4.22d)

ε ≥ 0. (4.22e)

A slight modification is required for the soft constraints when using a collocation method, where
lateral deviation constraints are removed for the initial step k = 0. Constraints purely on the
initial state ξ0 are meaningless as it is a fixed value, and using an ∞-norm penalty formulation
on slack variables means that future states are not encouraged to move back into the feasible
region if the initial state is already violated.

More details about the objective function gradient, constraints and constraint Jacobian are
in Appendix A.2. Similar to the multiple shooting scheme, the BFGS method is used to approx-
imate the Hessian of the Lagrange equation.

26

Chapter 4 – Discretisation

4.4 Integration schemes

In the successive linearisation and multiple shooting schemes, Euler integration was initially
used to propagate the state forwards. To increase the accuracy of this integration, a finer
discretisation grid can be used by decreasing the time step ∆t. However, this either leads to a
shorter time horizon if the NLP size is to be kept constant, or a larger optimisation problem
if the time horizon is to be kept constant. Each of these will either lead to either less optimal
solutions or slower computation times respectively, neither of which are desirable. Instead, a
higher order integration scheme can be used instead to increase the accuracy while retaining
the same amount of discretisation points and time horizon. The RK family was used to achieve
this.

To introduce how these integration schemes are used, a generalised form of the integration
of a state space equation is introduced

ξk+1 = ξk + f(·)(ξk, uk), (4.23)

where f(·):Rnξ ×Rnu → Rnξ is the integration scheme being considered. For example, the Euler
integration scheme would be defined as

fEuler(ξk, uk) = f(ξk, uk)∆t. (4.24)

Now consider the RK4 integration scheme

fRK4(ξk, uk) = 1
6(k1 + 2k2 + 2k3 + k4), (4.25)

where

k1 = f(ξk, uk) ∆t (4.26a)

k2 = f

(
ξk + 1

2k1, uk

)
∆t (4.26b)

k3 = f

(
ξk + 1

2k2, uk

)
∆t (4.26c)

k4 = f(ξk + k3, uk) ∆t. (4.26d)

To use this for both the successive linearisation and multiple shooting schemes, the Jacobians

27

Chapter 4 – Discretisation

of this expression need to be derived. This is found as

Ãk = I + ∂fRK4
∂ξ

∣∣∣∣ξ = ξl,k
u = ul,k

= I + 1
6

(
∂k1
∂ξ

+ 2∂k2
∂ξ

+ 2∂k3
∂ξ

+ ∂k4
∂ξ

)
(4.27a)

B̃k = ∂fRK4
∂u

∣∣∣∣ξ = ξl,k
u = ul,k

= 1
6

(
∂k1
∂u

+ 2∂k2
∂u

+ 2∂k3
∂u

+ ∂k4
∂u

)
(4.27b)

d̃k = fRK4(ξl,k, ul,k)−
∂fRK4
∂ξ

∣∣∣∣ξ = ξl,k
u = ul,k

ξl,k −
∂fRK4
∂u

∣∣∣∣ξ = ξl,k
u = ul,k

ul,k, (4.27c)

where the partial derivatives of each component ki is found as [47]

∂k1
∂ξ

= ∆t ∂f
∂ξ

∣∣∣∣ξ = ξl,k
u = ul,k

(4.28a)

∂k2
∂ξ

= ∆t ∂f
∂ξ

∣∣∣∣ξ = ξl,k + 1
2k1

u = ul,k

(
I + 1

2
∂k1
∂ξ

)
(4.28b)

∂k3
∂ξ

= ∆t ∂f
∂ξ

∣∣∣∣ξ = ξl,k + 1
2k2

u = ul,k

(
I + 1

2
∂k2
∂ξ

)
(4.28c)

∂k4
∂ξ

= ∆t ∂f
∂ξ

∣∣∣∣ξ = ξl,k + k3
u = ul,k

(
I + ∂k3

∂ξ

)
, (4.28d)

and

∂k1
∂u

= ∆t ∂f
∂u

∣∣∣∣ξ = ξl,k
u = ul,k

(4.29a)

∂k2
∂u

= ∆t

 ∂f

∂u

∣∣∣∣ξ = ξl,k + 1
2k1

u = ul,k

+ 1
2
∂f

∂ξ

∣∣∣∣ξ = ξl,k + 1
2k1

u = ul,k

∂k1
∂u

 (4.29b)

∂k3
∂u

= ∆t

 ∂f

∂u

∣∣∣∣ξ = ξl,k + 1
2k2

u = ul,k

+ 1
2
∂f

∂ξ

∣∣∣∣ξ = ξl,k + 1
2k2

u = ul,k

∂k2
∂u

 (4.29c)

∂k4
∂u

= ∆t

 ∂f

∂u

∣∣∣∣ξ = ξl,k + k3
u = ul,k

+ 1
2
∂f

∂ξ

∣∣∣∣ξ = ξl,k + k3
u = ul,k

∂k3
∂u

 . (4.29d)

Note that Ãk, B̃k and d̃k are the same expressions that are used in (4.8) and (A.4a).
Similarly, for the RK2 integration scheme

fRK2(ξk, uk) = k2, (4.30)

a similar derivation can be made to show that the Jacobians required for discretisation are given
by (4.28b) and (4.29b).

28

Chapter 5

Implementation

5.1 Time delay compensation

Time delay in a system poses a problem to control systems, and even small amounts of delay can
result in instability and poor performance [40]. As seen in Figure 5.1, even a small amount of
uncompensated time delay can lead to extremely poor control performance. In the application
of autonomous racing, time delay is expected in multiple areas, including algorithm processing
times, communication delays between computing units, and actuator transient responses.

0 5 10 15 20 25 30−20

−10

0

10

X (m)

Y
(m

)

τD = 0s
τD = 0.15s uncompensated
τD = 0.15s compensated

Figure 5.1: Simulated trajectories with and without time delay around the first corner of
FSS2019. If time delay is uncompensated for, the RHP performs poorly as it reacts too slowly
to perform required maneuvers. The proposed delay-compensation algorithm is able to achieve
similar results to the trajectory without time delay.

Here, an important distinction is made between transient response delay as described in
Section 2.4, and dead time which represents the time between when a command is sent and
when the vehicle starts responding. Unlike transient response, dead time is difficult to model

29

Chapter 5 – Implementation

in a way that can be used for control. For RHP problems, a common way to compensate for a
period of dead time τD is to make a prediction of the state after an expected delay [48, 49]. Past
controls are stored in a list {u∗0(i− 1), u∗0(i− 2), . . . , u∗0(i−M)}, which are then used to predict
the delay-compensated state from the measured state ξ̂. The delay-compensated state is then
used as the initial condition for the RHP. The same model used for the RHP plant model can
be used for the prediction estimations. A description of the algorithm used to implement this is
detailed in Algorithm 1.

Algorithm 1 Time delay compensation
i← 0
M ← dτD/dte . Total length of past controls needed
for j in 1 to M do

u∗0(i− j)← 0 . No control inputs before initialisation
end for

while carIsRunning do
ξ̂ ← SLAM() . Receive state estimation from SLAM algorithm
for j in M downto 2 do

ξ̂ ← ξ̂ + f(ξ̂, u∗0(i− j))∆t . Forward prediction step
end for
ξ̂ ← ξ̂ + f(ξ̂, u∗0(i− 1))(τD − (M − 1)∆t) . Final forward prediction step
u∗0(i)← RHP(ξ̂) . Store controls to use in future delay compensation
i = i+ 1

end while

It is important to note however that this approach does not perfectly compensate for time
delay. The model used to predict the future state is imperfect, such that the longer the time
delay that needs to be compensated, the more significant modelling error becomes, and the less
accurately the delay is compensated for. Therefore, the root cause of dead time should always
be minimised where possible.

5.2 Hot-starting

Choosing a good initial guess is important in optimisation problems to minimise the number of
iterations required to reach an optimal solution, and also to avoid falling into bad local min-
ima. Hot-starting or warm-starting is a technique where a solution from a similar optimisation
problem is used as the initial guess, based on the assumption that similar optimisation problems
should have similar optimal solutions.

For RHP problems, the ability to hot-start a solution arises naturally from the receding
horizon nature of the algorithm, by using the previous optimal solution to hot-start the current
optimal control problem. Notably, outside of model errors, disturbances, and sensor measure-
ment noise, and assuming the terminal penalty perfectly predicts the infinite horizon, the last
N −1 elements of the previous optimal solution should be exactly equal the first N −1 elements

30

Chapter 5 – Implementation

of the following optimal solution, as the two problems are identical apart from being a time step
apart from each other. This allows hot-starting to be further improved for RHP problems by
shifting the previous solution forwards by a time step [50], in which case new terminal variables
uN = uN−1 and xN+1 = xN + f(xN , uN)∆t are typically chosen to be appended to the initial
guess.

Hot-starting is known to work well for active-set methods, which is the type of optimisation
algorithm qpOASES [51] uses. However, IP methods such as that used by IPOPT [18] are
less effective at leveraging information obtained from hot-starting [17]. These differences are
observed in the results shown in Figure 5.2, where the impact of hot-starting is most prominent
when using the active-set optimiser. Overall, hot-starting with the active-set optimiser resulted
in a computation time improvement by a factor of 7.44, compared to the factor of 1.25 achieved
by the IP method.

0 20 40 60 80 100
Hot-start

Cold-start

CPU solve times (ms)

LTV

0 100 200 300
Hot-start

Cold-start

CPU solve times (ms)

Trapezoidal Collocation

Figure 5.2: Comparisons between computation times of solving the optimisation problem when
cold-starting and hot-starting. The LTV-RHP (left) is solved using qpOASES, while the trape-
zoidal collocation scheme (right) is solved using IPOPT. The most extreme outlier for hot-started
LTV-RHP CPU times corresponds to the first iteration when there is no solution to hot-start
from.

5.3 Block matrix multiplication

Block matrix multiplication is a method of improving the efficiency of matrix multiplications
through cache-friendly operations. To optimise matrix operations, matrices are ideally stored
in the L1 cache, which second only to registers are the fastest form of memory in a computer.
However, due to their small storage size, large matrices cannot be stored on the L1 cache, and
therefore must be stored on the slower L2 cache, L3 cache or main memory.

Blocking is a technique in matrix multiplication where the full matrices are subdivided into
smaller blocks, which are then treated as elements to be used in a way similar to the standard
matrix multiplication algorithm. By doing this, these submatrices can be fully stored in the
L1 cache, which can significantly improve the matrix multiplication performance [52]. This
algorithm is visualised in Figure 5.3.

For the LTV-RHP described in Section 4.1, matrix multiplication between large, dense ma-
trices need to be performed to generate the QP problem. In C++, the Eigen 3 [53] library

31

Chapter 5 – Implementation

× =

(M ×N) (N × P) (M × P)

(m× n) (n× p) (m× p)

Figure 5.3: Representation of block matrix multiplication.

is used to optimise the performance of these operations. However, when initially testing with
unblocked operations, the total computation times to perform these operations was relatively
slow and erratic as seen in Figure 5.4. This effect may have been exacerbated by other simul-
taneously running algorithms such as the SLAM algorithm similarly needing to perform large
matrix multiplications, resulting in cache thrashing.

Blocking can be implemented fairly naturally for the QP generation problem, as matrices
are already constructed as block matrices. Another advantage of block operations is that the
structure of the matrices can be taken advantage of. For example, many of the matrices that
are used in generating the QP problem are block-triangular, and by using this known structure,
the number of operations that need to be performed is halved.

Overall, blocking operations were able to significantly reduce the average computation times
by about a factor of 10, and the worst-case computation time by a factor of 35.

0 5 10 15 2010−4

10−3

10−2

10−1

100

Time (s)

C
PU

tim
e

(s
)

Unblocked
Blocked

Figure 5.4: CPU times required to calculate the Hessian H, gradient f , constraint matrix G and
bounds γ, γ of the LTV-RHP QP problem with 20 time steps in C++ using the Eigen library over
a lap of FSG2019 . The standard matrix multiplication had an average CPU time of 3.05 ms and
maximum CPU time of 125.5 ms, compared to the average CPU time of 0.34 ms and maximum
CPU time of 3.6 ms when using block matrix multiplication.

32

Chapter 6

Experimental Results

To determine the best performing formulation of the RHP problem, different vehicle models and
discretisation schemes discussed in Chapters 2 and 4 were first prototyped in MATLAB, and
their performance were evaluated against each other to determine which formulation performed
the best for the FSD competition environment. Once an optimal formulation was determined,
it was integrated with the rest of the autonomous systems pipeline in C++. A full hardware-
in-the-loop simulation experiment was performed to validate the performance of the proposed
RHP design, and its performance was benchmarked against MMS’s existing motion planning
implementations. Three tracks used in previous official FSD competitions including Formula
Student Germany (FSG2019), Formula Student Spain (FSS2019) and Formula Student Online
(FSO2020) are used to evaluate the planner performances, and are visualised in Figure 6.10.

6.1 RHP Formulation Analysis

Intitial experiments were conducted in MATLAB in a simplified simulation environment1 to
compare different RHP formulations. The simulation environment utilised the dynamic bicycle
model in Cartesian coordinates described in (2.3), which the RHP interfaced with using velocity
and steering wheel angle PID controllers. Sensor noise, dead time and actuator transient re-
sponse were omitted from the simulation. RHP plant models in this section did not incorporate
actuator transient response described in Section 2.4. The reference trajectory used was a naive
20 m/s constant velocity trajectory with no lateral or angular deviation from the centreline.
Experiments were performed on an AMD Ryzen 5 3600 CPU running at 3.6 GHz with 16 GB
of RAM on Windows 10. Unless otherwise specified, all RHP’s used a time step of ∆t = 50 ms
and number of time steps N = 40.

1https://github.com/kerry-he/fsae-mpc

33

Chapter 6 – Experimental Results

6.1.1 Vehicle model

The kinematic bicycle model and the dynamic bicycle model were evaluated against each other
as the plant model used in the RHP. Lap times are compared in Table 6.1, and computation
times are compared in Figure 6.2.

The dynamic bicycle model saw significant lap time advantages over the kinematic bicycle
model. The main advantage of the dynamic bicycle model is that it is able to model tyre
forces experienced by the car, and utilise tyre friction ellipse constraints to ensure the car
safely remains within the limits of operation. In comparison, the lateral acceleration constraints
that are enforced on the kinematic bicycle model have to be more restrictive to ensure the car
remains within the same limits, as the lateral tyre force can only be approximated through the
lateral acceleration of the car. The differences in these constraints are shown in Figure 6.1. As
maximisation of tyre forces is often one of the most important factors in vehicle racing [24],
the improved cornering ability is reflected by significantly faster velocities across the track,
ultimately resulting in better lap times.

Table 6.1: Comparison of lap times achieved by RHP formulations using the kinematic and
dynamic bicycle models.

Lap Times (s)
FSG2019 FSS2019 FSO2020

Kinematic 27.27 28.13 35.27
Dynamic 22.43 22.17 27.70

−10 −5 0 5 10

−10

−5

0

5

10

ac (m/s2)

a
l

(m
/s

2)

Kinematic
Dynamic

0 100 200 3000

5

10

15

20

s (m)

ẋ
(m

/s
)

Kinematic
Dynamic

Figure 6.1: Comparison of simulated longitudinal and latitudinal accelerations experienced by
the rear tyres (left) and the longitudinal velocity profile (right) between the kinematic and
dynamic bicycle models over a lap of FSG2019. Enforced friction ellipse boundaries are shown
as the dashed ellipse.

34

Chapter 6 – Experimental Results

However, the trade off with using the dynamic bicycle model is the added computational
complexity arising from an increase in state variables, constraints, and more complex gradient
structures. Overall, it was found that the dynamic bicycle model solved approximately twice
as slowly compared to the kinematic bicycle model. However, it was decided that the improved
lap times was a more important factor than the slower CPU times. The key requirement for
real-time feasibility of the RHP is for the solve times to be less than the discretised time step.
Multiple methods to improve CPU times were not implemented yet, including using optimised
C++ code, using hot-starting and MPC-specific optimisations offered by qpOASES [51], and us-
ing a precomputed optimal racing line as the reference trajectory as opposed to a naive constant
velocity reference. These changes were expected to reduce the computation times by approx-
imately a factor of 10, and bring the maximum computation time below the 50 ms time step
used in the experiments.

Given these factors, the dynamic bicycle model was chosen as the plant model for the final
RHP implementation.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Dynamic

Kinematic

CPU solve times (ms)

Figure 6.2: Distribution of CPU solve times across a lap of each of the FSG2019, FSS2019 and
FSO2020 tracks.

6.1.2 Discretisation

The successive linearisation, multiple shooting, and trapezoidal collocation methods were ex-
plored to transcribe the RHP to an optimisation problem. All linear schemes were solved using
qpOASES [51], and all nonlinear schemes were solved using IPOPT [18]. Lap times are compared
in Table 6.2, and computation times are compared in Figure 6.3.

The successive linearisation schemes were observed to solve much faster than all other non-
linear schemes, and also exhibited a much smaller range of outliers. In particular, there were
situations with the RK2 and RK4 multiple shooting schemes where the solution did not converge
after the specified 5000 maximum iterations. As the worst-case computation times are important
for being able to guarantee a feasible solution within a specified time limit, the large spread of
outliers for the nonlinear schemes is highly undesirable. Another interesting observation is that
while the integration scheme had a minimal impact on the computation speed of the successive
linearisation schemes, it has a noticeable impact on the multiple shooting schemes. This may be
attributed to how for the successive linearisation scheme, the integration scheme is only called
a single time at each time step to construct the QP. However for the multiple shooting formula-

35

Chapter 6 – Experimental Results

tions, the integration scheme needs to be called multiple times at each time step to calculate the
constraints and constraint Jacobian at each optimisation iteration. A second major difference
between the linear and nonlinear discretisation schemes with regards to computational speed
is their sensitivity to the RHP problem size. As seen in Figure 6.4, the linear scheme is much
more sensitive to the number of time steps N used in the RHP. This could be advantageous for
the linear scheme as it provides an additional degree of freedom to tune the RHP to reduce the
computation times if needed.

0 50 100 150 200 250 300 350 400 450 500

RK4 MS

RK2 MS

Euler MS

Trap. Col.

RK4 LTV

RK2 LTV

Euler LTV

18604, 2171
1736, 773, 542

14661, 7981
6343, 734

1074, 878
547, 476

CPU solve times (ms)

Figure 6.3: Distribution of CPU solve times across a lap of each of the FSG2019, FSS2019 and
FSO2020 tracks.

10 · 20 10 · 21 10 · 22 10 · 2310−3

10−2

10−1

100

Time steps

C
PU

tim
e

(s
)

Linear
Nonlinear

Figure 6.4: Comparison of CPU times between varying sizes of linear (LTV-RHP) and nonlinear
(trapezoidal collocation) RHP discretisation schemes. The linear scheme is much more sensitive
to the problem size.

36

Chapter 6 – Experimental Results

Although the nonlinear schemes consistently achieved faster lap times over successive lin-
earisation, the margin between the best and worst lap times was much smaller than the lap time
differences between different vehicle models. As seen in the G-G plot comparison in Figure 6.5,
the nonlinear schemes are only observed to have a marginal improvement in friction ellipse util-
isaiton. However, the nonlinear schemes were observed to be able to better navigate through
more complex parts of the track, such as the slalom in FSG2019 as seen in the velocity plot
in Figure 6.5. Nevertheless, once implemented in the presence of noise, time delay and other
imperfections, in addition to utilising a precomputed racing line reference, these improvements
are not expected to be particuarly significant. Another observation is that the RK2 and RK4
integration schemes generally outperformed the Euler integration scheme, which was expected
due to their higher integration accuracy.

Table 6.2: Simulated lap time comparison between different discretisation methods. Shortest
lap times for each track are bolded.

Discretisation Method Lap Time (s)
FSG2019 FSS2019 FSO2020

LTV
Euler 22.96 22.33 27.98
RK2 22.10 22.37 28.21
RK4 22.43 22.17 27.70

Collocation Trapezoidal 21.90 22.05 27.55

Multiple Shooting
Euler 22.36 21.69 27.86
RK2 21.85 21.42 27.35
RK4 21.89 21.43 27.34

−10 −5 0 5 10

−10

−5

0

5

10

ac (m/s2)

a
l

(m
/s

2)

LTV
TC
MS

0 100 200 3000

5

10

15

20

s (m)

ẋ
(m

/s
)

LTV
TC
MS

Figure 6.5: Comparison of simulated longitudinal and latitudinal accelerations experienced by
the rear tyres between linear time-varying (LTV), trapezoidal collocaiton (TC) and multiple
shooting (MS) discretisation schemes over a lap of FSG2019.

37

Chapter 6 – Experimental Results

Table 6.3: Simulated track and friction ellipse soft constraint violations. The smallest amount
of violations for each track are bolded.

Discretisation Method
Maximum Track

Constraint Violation (m)
Total Friction Ellipse

Constraint Violation (s)
FSG2019 FSS2019 FSO2020 FSG2019 FSS2019 FSO2020

LTV
Euler 0.00 0.03 0.00 0.00 0.00 0.06
RK2 0.00 0.03 0.00 0.00 0.00 0.00
RK4 0.01 0.01 0.00 0.00 0.00 0.02

Collocation Trapezoidal 0.02 0.01 0.06 0.01 0.02 0.06

Multiple Shooting
Euler 0.00 0.03 0.00 0.27 0.75 0.29
RK2 0.00 0.02 0.00 0.02 0.18 0.25
RK4 0.01 0.02 0.02 0.01 0.04 0.61

In addition to lap times, soft constraint violations as summarised in Table 6.3 were also
compared. Interestingly, the successive linearisation scheme was able to satisfy the constraints
the most consistently, perhaps due to the problem being simpler and easier to solve. In compar-
ison, the multiple shooting methods are much less consistent in satisfying the soft constraints,
particularly the friction ellipse constraint.

The main drawback of the successive linearisation scheme is its instability and inability
to find feasible solutions in difficult scenarios, which is a problem that is exacerbated in the
presence of noise and dead time. As the linearisation trajectory used is the optimal solution
of the previous solution, a bad solution leads to a bad linearisation trajectory, which can cause
a cascading effect which the LTV-RHP may struggle to recover from. However, precomputing
an optimal racing line and extracting reference waypoints from this path helped to guide the
LTV-RHP towards a feasible, optimal solution which mitigated these issues, and the objective
function weights were carefully chosen to punish deviations from this precomputed trajectory.

Overall, it was decided that for the RHP, the major computational speed benefits of the
successive linearisation scheme outweighed the minor performance benefits brought on by the
more complex nonlinear discretisation methods. Moreover, an RK4 integration scheme was
chosen for its improved lap time performance, while avoiding any additional computational
burden. However, for the offline optimal racing line problem, a nonlinear discretisation method
was used for its higher accuracy, robustness, and ability to search through a wider state space
without a good initial guess. Specifically, the trapezoidal collocation method was chosen over
the multiple shooting methods for its ability to better satisfy constraints.

6.2 Full simulation

Following the previous experiments, the proposed RHP was designed using a successive lineari-
sation discretisation scheme with an RK4 integrator, utilising a dynamic bicycle model described

38

Chapter 6 – Experimental Results

in (2.18). The final LTV-RHP2 was implemented in C++ to optimise its performance. A time
step of ∆t = 20 ms with N = 20 was used, and a dead time of 150 ms was compensated us-
ing the forward prediction method presented in Section 5.1. The LTV-RHP was solved using
qpOASES [51], with hot-starting and MPC-specific settings enabled. The reference trajectory
used is a precomputed optimal racing line computed using the method described in Section 3.2,
solved using a trapezoidal collocation discretisation scheme.

A hardware-in-the-loop simulation environment implemented in ROS [54] shown in Figure 6.6
was used to evaluate the performance of the RHP when fully integrated into MMS’s autonomous
systems pipeline. From the simulated vehicle’s current state, IMU, GPS, and landmark measure-
ments were simulated with noise. The SLAM algorithm used these measurements to estimate the
vehicle state, which the RHP used to calculate an optimal trajectory. The commercial vehicle
modelling software IPG CarMaker3 was used to simulate the vehicle dynamics, which considers
vehicle suspension, powertrain, aerodynamic, and tyre force effects. IPG CarMaker was run as
a separate process and communicates with ROS through a UDP protocol, which allowed the
online capabilities of the RHP to be tested.

The proposed LTV-RHP was compared against two other planners which were previously
used by MMS. The first was a baseline (BL) RHP formulation which utilised a kinematic bicycle
model in Cartesian coordinates, had a time step of ∆t = 600 ms with N = 5, and was transcribed
and solved using ACADO Toolkit [1]. The second planner was a pure pursuit algorithm (PP).
Both of these alternative planners used a precomputed optimal racing trajectory based off an
algorithm previously developed by MMS which uses a simple point mass model [55].

All simulations were run on an Intel i7-6500U CPU running at 2.5GHz with 8GB of RAM
on Linux Ubuntu 18.04.

Sensor
simulation

Localisation
and mapping

Motion
planning

Vehicle
dynamics
simulation

Figure 6.6: Hardware-in-the-loop simulation environment pipeline used for final evaluation of
the RHP. Grey blocks represent simulated components of the real world equivalents, and white
blocks function identically between simulated and real world missions.

6.2.1 Tuning

All planners were tuned to achieve the fastest lap times without hitting any cones, as hitting
cones incurs a points penalty in the competition.

In tuning the LTV-RHP, the most important consideration was ensuring that it was robust

2https://bitbucket.org/monashmotorsport/mms motion control/src/master/
3https://ipg-automotive.com/products-services/simulation-software/carmaker/

39

Chapter 6 – Experimental Results

and stable in the presence of noise and time delay. Firstly, the control weight matrix R was
weighted relatively heavily to dampen unnecessary movements which may destabilise the vehicle.
The lateral deviation n weight was similarly weighted to ensure the vehicle did not collide into
the track boundaries. The velocity ẋ and steering angle δ weights were also weighted more
heavily as they govern the movement of the vehicle, and tracking the reference values should
navigate it along an optimal trajectory in theory.

A full summary of the LTV-RHP parameters used for each track is shown in Table 6.4.

Table 6.4: Parameters for LTV-MPC used for each track in the full simulation experiments.

Q Qf R q n

FSG2019 diag(1, 1.25e4, 1, 200, 1, 1, 100) 10Q diag(50, 1e5) [2.5e7 1e5 2e5 2e5]T 1.0
FSS2019 diag(1, 2.5e4, 1, 200, 1, 1, 100) 10Q diag(50, 1e5) [1e9 1e5 2e5 2e5]T 0.875
FSO2020 diag(1, 5e4, 1, 200, 1, 1, 100) 10Q diag(50, 1e5) [1e9 1e5 2e5 2e5]T 0.75

6.2.2 Racing performance

The simulation results are summarised in Table 6.5, and the racing trajectories of each mo-
tion planner in each track are presented in Figure 6.10. For comparison, the winning team in
FSG2019 obtained a total time of 244.90 s. Overall, the LTV-RHP consistently and significantly
outperformed all other planners in all tracks.

Table 6.5: Simulated lap times in three different past competition tracks using the proposed
LTV-RHP (LTV), previous baseline RHP (BL) and pure pursuit (PP).

Track Lap Times (s)
1 2 3 4 5 6 7 8 9 10 Total

FSG2019
LTV 22.89 21.27 21.39 21.41 21.42 21.40 21.41 21.46 21.33 21.40 215.4
BL 31.22 30.72 30.71 30.73 30.70 30.73 30.72 30.74 30.72 30.74 307.7
PP 29.68 28.81 28.81 28.81 28.80 28.82 28.82 28.83 28.79 28.78 288.9

FSS2019
LTV 24.64 23.05 22.93 23.08 22.94 23.00 22.90 22.95 23.00 22.95 231.5
BL 28.84 28.23 28.24 28.26 28.23 28.23 28.23 28.24 28.22 28.22 282.9
PP 36.00 35.42 35.41 35.41 35.41 35.41 35.39 35.40 35.41 35.43 354.7

FSO2020
LTV 35.02 33.74 33.84 33.86 33.84 33.70 33.91 33.83 33.78 33.86 339.4
BL 48.04 47.67 47.64 47.64 47.67 47.65 47.65 47.66 47.64 47.66 476.9
PP 40.00 39.47 39.52 39.49 39.48 39.51 39.50 39.48 39.50 39.50 395.4

The improved performance of the LTV-RHP can be attributed to a few key factors. Firstly,
by using the more complex dynamic bicycle model, thte LTV-RHP was able to exploit the
vehicle dynamics much more effectively, as discussed in Section 6.1.1. As shown in the G-G plot
in Figure 6.7, the LTV-RHP can be seen to be driving at the edges of the friction ellipse for
the majority of the track as opposed to the other two planners. The overall effect is seen as a
higher average acceleration; the LTV-RHP maintained an average acceleration of 9.44 m/s2 over

40

Chapter 6 – Experimental Results

FSG2019, compared to the 4.86 m/s2 and 6.12 m/s2 average accelerations maintained by the BL
and PP planners.

Secondly, the LTV-RHP had improved path tracking capabilities due to the use of curvilinear
coordinates and enforcement of track boundary constraints. As FSD tracks tend to be relatively
narrow, it can be quite difficult to race through the track at a high velocity without knowledge
of the track boundaries. BL and PP were both significantly hindered by this; the reference
trajectory was already fixed to the track centreline, and the only other tunable parameter
for these planners to prevent track boundary violations was to reduce the maximum reference
velocities and accelerations, as seen in Figure 6.8. On the other hand, by implementing track
boundary constraints on the LTV-RHP, the car could drive along a much more efficient racing line
while still ensuring that it remained within the tracks. This can be seen in Figure 6.9 and 6.10,
where the LTV-RHP skirted about the boundaries and corner-cut in a controlled manner much
more frequently, but never passed the specified boundaries. The other two planners had to
remain closer to the centreline for the majority of the track, yet still exhibited large uncontrolled
deviations which ultimately bottlenecked the performance of the planners. PP was also observed
to exhibit undesirable fluctuations in the lateral deviation arising from oscillatory steering as
opposed to efficient corner cutting.

Finally, new methods of compensating for time delay were also significant contributors to
the improved performance. Transient delay represents a significant portion of the lag in the
system, but was not considered in BL. Instead, BL employed large time steps of ∆t = 600ms
to create a dampening effect on the controls. However, this led to shallow controls which had
trouble performing complex manoeuvres, which was a second reason why the velocity profile of
BL had to be relatively constant. By modelling the transient response in the LTV-RHP, small
time steps could be used while remaining robust to time delay, allowing the planner to perform
much more aggressive manoeuvres to achieve faster lap times.

−10 0 10

−5

0

5

ay (m/s2)

a
x

(m
/s

2)

FSG2019

−10 0 10
ay (m/s2)

FSS2019

−10 0 10
ay (m/s2)

FSO2020

LTV
BL
PP

Figure 6.7: Comparison of G-G plots over the first lap of each planner. Estimation of the friction
ellipse is shown as the dashed ellipses.

41

Chapter 6 – Experimental Results

0 100 200 3000

10

20

s (m)

ẋ
(m

/s
)

FSG2019

0 100 200
s (m)

FSS2019

0 100 200 300
s (m)

FSO2020

Ref.
LTV
BL
PP

Figure 6.8: Comparison of the longitudinal velocities over the first lap of each planner. The
precomputed reference velocity used for the proposed LTV-RHP is shown as the dashed line.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−1

0

1

n
(m

)

FSG2019

Bounds
LTV
BL
PP

0 20 40 60 80 100 120 140 160 180 200 220 240 260
−1
−0.5

0
0.5

1

n
(m

)

FSS2019

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

−0.5
0

0.5

s (m)

n
(m

)

FSO2020

Figure 6.9: Comparison of the lateral deviations over the first lap of each planner. Lateral
deviation constraints enforced on the proposed LTV-RHP are shown as dashed lines.

42

Chapter 6 – Experimental Results

−20 0 20 40
−80

−60

−40

−20

0

Y
(m

)

LTV-RHP

−20 0 20 40

Baseline RHP

−20 0 20 40

Pure Pursuit

−20 0 20 40
−60

−40

−20

0

Y
(m

)

−20 0 20 40 −20 0 20 40

−40 −20 0 20 40

0

20

40

60

80

X (m)

Y
(m

)

−40 −20 0 20 40
X (m)

0 5 10 15 20 25
Speed (m/s)

−40 −20 0 20 40
X (m)

Figure 6.10: Comparison of simulated trajectories and velocity profiles over the second lap in
the FSG2019 (top), FSS2019 (middle) and FSO2020 (bottom) tracks between different planners.
The beginning of the tracks and directions the vehicle navigates the track in are indicated using
an arrow.

43

Chapter 6 – Experimental Results

6.2.3 Computation time

The distribution of computation times measured from all LTV-RHP experiments are shown in
Figure 6.11. For the RHP to run online, it must have a computation time less than the time
step ∆t = 20 ms. The median and maximum CPU times observed were 0.59 ms and 10.40 ms
respectively, validating the real time performance capabilities of the RHP.

The computation time of the LTV-RHP can be divided into the preparation step which
constructs the QP problem, and optimisation step which solves the QP problem. Although the
median computation times are quite similar, the majority of the variability in computation times
was due to the optimisation step. This variability was managed by setting the maximum CPU
time of the qpOASES solver to 10 ms to constrain the upper bound of computation times. How-
ever, this limit was only hit once, representing 0.026% of all solutions. As stopping an optimiser
before convergence means that feasibility of the optimal control solution is not guaranteed, the
low probability that this maximum computation time limit is enforced is highly desirable.

The low median computation time is also beneficial. Compared to the predicted dead time
of 150 ms, the RHP solve times have a negligible contribution to the dead time. Moreover,
the short time step permitted by the fast solve times allowed the RHP to be run at a higher
frequency, allowing for improved path tracking capabilities and reactions to disturbances. This
characteristic was achieved by defining a relatively small number of time steps N = 20, where as
discussed in Section 6.1.2, the computation time could decrease exponentially with the number
of time steps used for successive linearisation schemes. However, the tradeoff is a shorter time
horizon, which is undesirable as the computed control trajectory may not lead to an optimal
or feasible trajectory beyond the considered time horizon. This issue is mitigated by using the
precomputed racing trajectory to incorporate information about the entire track within each
reference trajectory segment.

An important note with the presented computation times is that the NVIDIA Jetson AGX
Xavier used on M19-D, which has an ARM CPU processor, is expected to be less powerful than
the Intel i7-6500U CPU used for these experiments. From preliminary testing, the computation
times on the Xavier are expected to be twice as slow. However, given that the maximum
measured computation time is already half the discretised time step, this may not be an issue.

0 1 2 3 4 5 6 7 8 9 10 11

Total

Optimisation

Preparation

CPU solve times (ms)

Figure 6.11: Distribution of CPU times of LTV-MPC throughout 10 laps of FSG2019, FSS2019
and FSO2020. Total computation time outliers make up 4.5% of all samples.

44

Chapter 7

Conclusion

This thesis presents a motion planning implementation for an autonomous Formula Student
racecar to compete in the FSD competition. The proposed motion planner first computes an
optimal racing line for the entire track horizon offline, then tracks this reference trajectory in
real time using an LTV-RHP. The proposed RHP specifications were justified against alternative
modelling and discretisation methods, before evaluating its performance in a full simulation.

By transcribing the optimal control problem to an optimisation problem, additional flexibility
over the design of the RHP was achieved. Multiple discretisation methods were explored to
perform this transcription, where the successive linearisation scheme was ultimately chosen for
being significantly computationally lighter, while still performing adequately compared to the
heavier but more accurate nonlinear discretisation schemes. The fast computation times not
only aids in reducing the total dead time that needs to be compensated for, but also allows the
LTV-RHP to run at a higher frequency to achieve superior tracking behaviour.

New modelling techniques were also explored given this additional flexibility. Significant
performance improvements were achieved by utilising a dynamic bicycle model, which allowed
the LTV-RHP to operate the vehicle closer to the limits of the vehicle dynamics, while the
light successive linearisation discretisation scheme allowed the more complex vehicle model to
be feasibly solved in real time. Curvilinear coordinates which required a parametric piecewise
spline to describe the track path was implemented, which allowed for superior control of the car
and consideration of the track boundaries. Modelling the transient response of the actuators
also compensated for a significant portion of the time delay, thus reducing the amount of dead
time the less stable forward-prediction compensation method needed to consider.

Overall, the proposed RHP was validated and compared against existing planners in a
hardware-in-the-loop simulation environment. The RHP is successfully shown to significantly
outperform MMS’s previous motion planning implementations, and consistently achieve faster
lap times in a variety of different tracks.

45

Chapter 7 – Conclusion

7.1 Future work

A few avenues for future work are proposed to validate or further improve the the performance
of the RHP. Firstly, real-world testing of the RHP is a natural progression of the experimental
work to properly validate and evaluate its on-track performance. Additional challenges expected
in real-world testing include additional noise, uncertainty, disturbances and time delay which
will hinder the performance and stability of the planner. The slower computing unit on the
M19-D may also limit the performance of the RHP.

A second avenue for future work is to modify it to work for the autocross mission. The RHP
was designed and validated for the trackdrive mission, where the track is known beforehand and
therefore a reference racing trajectory could be precomputed. Several design decisions relied
on this assumption, such as using a short time horizon and using a linearised discretisation
scheme. Further investigation into the performance of the RHP on an unknown track and
making modifications to how the RHP is implemented will allow the planner to be used for the
autocross mission.

Furthermore, the dynamic bicycle model equations were derived for M19-D, which is a rear-
wheel drive vehicle. However, MMS’s newly developed vehicle, M21, is a four-wheel drive,
which will require slight modifications to the vehicle model to be made to be used on M21.
More significantly, M21 will implement torque-vectoring. By adding this as an additional control
variable in the RHP, greater control over the vehicle’s behaviour can be achieved, and ultimately
allow lap times to be further improved. Related works include [56].

Finally, a proper comparison between the proposed discretisation scheme and that offered by
optimal control libraries could be conducted. As the RHP formulations between the proposed
and previous implementations were significantly different from each other, the performance dif-
ferences between the discretisation schemes could not accurately be measured. Optimal control
libraries often have features such as guaranteeing a feasible solution within a specified time
frame, and validating the impact of these features would be an interesting exercise.

46

Bibliography

[1] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit—an open-source framework for
automatic control and dynamic optimization,” Optimal Control Applications and Methods,
vol. 32, no. 3, pp. 298–312, 2011.

[2] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA grand challenge: the great robot
race. Springer, 2007, vol. 36.

[3] ——, The DARPA urban challenge: autonomous vehicles in city traffic. Springer, 2009,
vol. 56.

[4] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp, and B. Lohmann,
“Minimum curvature trajectory planning and control for an autonomous race car,” Vehicle
System Dynamics, 2019.

[5] G. Hartmann, Z. Shiller, and A. Azaria, “Autonomous head-to-head racing in the indy
autonomous challenge simulation race,” arXiv preprint arXiv:2109.05455, 2021.

[6] K. Kritayakirana and J. C. Gerdes, “Autonomous vehicle control at the limits of handling,”
International Journal of Vehicle Autonomous Systems, vol. 10, no. 4, pp. 271–296, 2012.

[7] A. Katriniok and D. Abel, “LTV-MPC approach for lateral vehicle guidance by front steer-
ing at the limits of vehicle dynamics,” in 2011 50th IEEE Conference on Decision and
Control and European Control Conference. IEEE, 2011, pp. 6828–6833.

[8] B. Alrifaee and J. Maczijewski, “Real-time trajectory optimization for autonomous vehicle
racing using sequential linearization,” in 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2018, pp. 476–483.

[9] R. Verschueren, S. De Bruyne, M. Zanon, J. V. Frasch, and M. Diehl, “Towards time-
optimal race car driving using nonlinear MPC in real-time,” in 53rd IEEE conference on
decision and control. IEEE, 2014, pp. 2505–2510.

[10] J. L. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan, and J. Lygeros, “Optimization-
based hierarchical motion planning for autonomous racing,” in 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2397–2403.

47

[11] L. Cardamone, D. Loiacono, P. L. Lanzi, and A. P. Bardelli, “Searching for the optimal
racing line using genetic algorithms,” in Proceedings of the 2010 IEEE Conference on Com-
putational Intelligence and Games. IEEE, 2010, pp. 388–394.

[12] N. R. Kapania, J. Subosits, and J. Christian Gerdes, “A sequential two-step algorithm for
fast generation of vehicle racing trajectories,” Journal of Dynamic Systems, Measurement,
and Control, vol. 138, no. 9, 2016.

[13] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann et al., “Stanley: The robot that won the DARPA Grand Chal-
lenge,” Journal of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[14] A. V. Rao, “A survey of numerical methods for optimal control,” Advances in the Astro-
nautical Sciences, vol. 135, no. 1, pp. 497–528, 2009.

[15] N. Dal Bianco, E. Bertolazzi, F. Biral, and M. Massaro, “Comparison of direct and indi-
rect methods for minimum lap time optimal control problems,” Vehicle System Dynamics,
vol. 57, no. 5, pp. 665–696, 2019.

[16] J. T. Betts, Practical methods for optimal control and estimation using nonlinear program-
ming. SIAM, 2010.

[17] T. A. Johansen, “Introduction to nonlinear model predictive control and moving horizon
estimation,” Selected topics on constrained and nonlinear control, vol. 1, pp. 1–53, 2011.

[18] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106,
no. 1, pp. 25–57, 2006.

[19] S. Nekkah, J. Janus, M. Boxheimer, L. Ohnemus, S. Hirsch, B. Schmidt, Y. Liu, D. Borbély,
F. Keck, K. Bachmann et al., “The autonomous racing software stack of the KIT19d,” arXiv
preprint arXiv:2010.02828, 2020.

[20] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering
control for autonomous vehicle systems,” IEEE Transactions on control systems technology,
vol. 15, no. 3, pp. 566–580, 2007.

[21] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to nonlinear
mpc: bridging the gap via the real-time iteration,” International Journal of Control, vol. 93,
no. 1, pp. 62–80, 2020.

[22] J. A. Matute, M. Marcano, S. Diaz, and J. Perez, “Experimental validation of a kine-
matic bicycle model predictive control with lateral acceleration consideration,” IFAC-
PapersOnLine, vol. 52, no. 8, pp. 289–294, 2019.

48

[23] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The kinematic bicycle
model: A consistent model for planning feasible trajectories for autonomous vehicles?” in
2017 IEEE intelligent vehicles symposium (IV). IEEE, 2017, pp. 812–818.

[24] C. Smith, Tune to win. Aero Publishers Fallbrook, 1978.

[25] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models
for autonomous driving control design,” in 2015 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2015, pp. 1094–1099.

[26] J. Kabzan, M. I. Valls, V. J. Reijgwart, H. F. Hendrikx, C. Ehmke, M. Prajapat, A. Bühler,
N. Gosala, M. Gupta, R. Sivanesan et al., “AMZ driverless: The full autonomous racing
system,” Journal of Field Robotics, vol. 37, no. 7, pp. 1267–1294, 2020.

[27] E. Alcalá, V. Puig, J. Quevedo, and U. Rosolia, “Autonomous racing using linear parameter
varying-model predictive control (LPV-MPC),” Control Engineering Practice, vol. 95, p.
104270, 2020.

[28] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-based model
predictive control: Toward safe learning in control,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 3, pp. 269–296, 2020.

[29] M. Brunner, U. Rosolia, J. Gonzales, and F. Borrelli, “Repetitive learning model predictive
control: An autonomous racing example,” in 2017 IEEE 56th annual conference on decision
and control (CDC). IEEE, 2017, pp. 2545–2550.

[30] J. M. Maciejowski, Predictive control: with constraints. Pearson education, 2002.

[31] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle system dynamics,
vol. 21, no. S1, pp. 1–18, 1992.

[32] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in International conference on machine learning. PMLR, 2013, pp. 1310–1318.

[33] T. D. Barfoot and C. M. Clark, “Motion planning for formations of mobile robots,” Robotics
and Autonomous Systems, vol. 46, no. 2, pp. 65–78, 2004.

[34] A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-C. Peng, “Path smoothing
techniques in robot navigation: State-of-the-art, current and future challenges,” Sensors,
vol. 18, no. 9, p. 3170, 2018.

[35] O. V. Polikarpotchkin and P. Lee, “Draw a smooth curve through a set of 2d points with
bezier primitives,” 2008.

49

[36] J. Weickert, B. T. H. Romeny, and M. A. Viergever, “Efficient and reliable schemes for
nonlinear diffusion filtering,” IEEE transactions on image processing, vol. 7, no. 3, pp.
398–410, 1998.

[37] M. Yarrow, “Solving periodic block tridiagonal systems using the sherman-morrison-
woodbury formula,” in 9th Computational Fluid Dynamics Conference, 1989, p. 1946.

[38] H. Wang, J. Kearney, and K. Atkinson, “Arc-length parameterized spline curves for real-
time simulation,” in Proc. 5th International Conference on Curves and Surfaces, vol.
387396, 2002.

[39] ——, “Robust and efficient computation of the closest point on a spline curve,” in Proceed-
ings of the 5th International Conference on Curves and Surfaces, 2002, pp. 397–406.

[40] A. S. Matveev, “The instability of optimal control problems to time delay,” SIAM journal
on control and optimization, vol. 43, no. 5, pp. 1757–1786, 2005.

[41] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model predictive
control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.

[42] M. N. Zeilinger, C. N. Jones, and M. Morari, “Robust stability properties of soft constrained
MPC,” in 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010, pp. 5276–
5282.

[43] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[44] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of 1:43
scale RC cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647,
2015.

[45] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid systems.
Cambridge University Press, 2017.

[46] M. Kelly, “An introduction to trajectory optimization: How to do your own direct colloca-
tion,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.

[47] A. Akpunar and S. Iplikci, “Runge-kutta model predictive speed control for permanent
magnet synchronous motors,” Energies, vol. 13, no. 5, p. 1216, 2020.

[48] G. Liu, J. Mu, D. Rees, and S. Chai, “Design and stability analysis of networked control
systems with random communication time delay using the modified MPC,” International
Journal of Control, vol. 79, no. 4, pp. 288–297, 2006.

50

[49] S. Trimboli, S. Di Cairano, A. Bemporad, and I. V. Kolmanovsky, “Model predictive control
for automotive time-delay processes: An application to air-to-fuel ratio control,” IFAC
Proceedings Volumes, vol. 42, no. 14, pp. 90–95, 2009.

[50] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods for nonlinear MPC
and moving horizon estimation,” in Nonlinear model predictive control. Springer, 2009,
pp. 391–417.

[51] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES: A parametric
active-set algorithm for quadratic programming,” Mathematical Programming Computation,
vol. 6, no. 4, pp. 327–363, 2014.

[52] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and optimizations of
blocked algorithms,” ACM SIGOPS Operating Systems Review, vol. 25, no. Special Issue,
pp. 63–74, 1991.

[53] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[54] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng et al.,
“ROS: an open-source robot operating system,” in ICRA workshop on open source software,
vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[55] A. Slomoi, “Path planning and control in an autonomous formula student vehicle,” Bache-
lor’s Thesis, Monash University, 2018.

[56] S. Srinivasan, S. N. Giles, and A. Liniger, “A holistic motion planning and control solution
to challenge a professional racecar driver,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 7854–7860, 2021.

51

Appendix A

Nonlinear programming matrices

A.1 Multiple shooting

The objective function gradient is expressed as:

∇Jε(Ξ) =



2Q(ξ1 − ξl,1)− 2MRe1

2Re0
...

2Q(ξN−1 − ξl,N−1)− 2MReN−1

2ReN−2

2Q(ξ1 − ξl,1)
2ReN−1


(A.1)

where M is a matrix which maps the error e to the corresponding state variables.
The constraint vector is represented as a column-stacked vector of plant model constraints

and path constraints:

c(Ξ) =



ξ0 + f(·)(ξ0, u0)− x1
...

ξN−1 + f(·)(ξN−1, uN−1)− ξN
g(ξ0, u0, ε)

...
g(ξN−1, uN−1, ε)


(A.2)

where M is a matrix which maps the error e to the corresponding state variables.
The constraint Jacobian can be expressed as:

∇c(Ξ) =
[
F

G

]
(A.3)

where F is the portion of the Jacobian arising from the model constraints, and G is the portion

52

of the Jacobian arising from the other functional constraints.

F =



−I B̃0 0 0 . . . 0 0 0 0 0ε
Ã1 0 −I B̃1 . . . 0 0 0 0 0ε
...

...
...

...
...

...
...

...
0 0 0 0 . . . −I B̃N−2 0 0 0ε
0 0 0 0 . . . ÃN−1 0 −I B̃N−1 0ε


(A.4a)

G =



0 D0 0 0 . . . 0 0 0 0 E

C1 0 0 D1 . . . 0 0 0 0 E
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 DN−2 0 0 E

0 0 0 0 . . . CN−1 0 0 DN−1 E


(A.4b)

A.2 Trapezoidal collocation

The objective function gradient is expressed as:

∇Jε(Ξ) =



Q(ξ0 − ξr,0)−MRe0

Re0

2Q(ξ1 − ξr,1)− 2MRe1

2Re1
...

2Q(ξN−1 − ξr,N−1)− 2MReN−1

2ReN−1

Q(ξN − ξr,N)−MReN

ReN



(A.5)

The constraint vector is represented as a column-stacked vector of collocation constraints and
path constraints:

c(Ξ) =



ξ0 + 1
2(f(ξ0, u0) + f(ξ1, u1))∆t− ξ1

...
ξN−1 + 1

2(f(ξN−1, uN−1) + f(ξN , uN))∆t− ξN
g(ξ0, u0, ε)

...
g(ξN , uN , ε)


(A.6)

53

The constraint Jacobian can be expressed as:

∇c(Ξ) =
[
F

G

]
(A.7)

where F is the portion of the Jacobian arising from the model constraints, and G is the portion
of the Jacobian arising from the other functional constraints.

F =



I + 1
2A0∆t 1

2B0∆t . . . 0 0 0ε
0 0 . . . 0 0 0ε
...

...
...

...
0 0 . . . 0 0 0ε
0 0 . . . −I + 1

2AN∆t 1
2BN∆t 0ε


(A.8a)

G =



C0 D0 0 0 . . . 0 0 0 0 E

0 0 C1 D1 . . . 0 0 0 0 E
...

...
...

...
...

...
...

...
0 0 0 0 . . . CN−2 DN−2 0 0 E

0 0 0 0 . . . 0 0 CN−1 DN−1 E


(A.8b)

54

	Introduction
	Background
	Research problem
	Literature review
	Motion planning
	Receding horizon planning
	Vehicle modelling

	Plant Model
	Kinematic bicycle model
	Dynamic bicycle model
	Low-velocity compensation

	Curvilinear coordinate system
	Path formulation
	Coordinate transform

	Actuator modelling
	Summary

	Optimal Planning for Racing
	Receding horizon planning
	Soft constraints
	Friction ellipse

	Time optimal planning

	Discretisation
	Successive linearisation
	Constraint linearisation

	Multiple shooting
	Trapezoidal collocation
	Integration schemes

	Implementation
	Time delay compensation
	Hot-starting
	Block matrix multiplication

	Experimental Results
	RHP Formulation Analysis
	Vehicle model
	Discretisation

	Full simulation
	Tuning
	Racing performance
	Computation time

	Conclusion
	Future work

	Nonlinear programming matrices
	Multiple shooting
	Trapezoidal collocation

