
Designing a Receding Horizon Planner for an
Autonomous Formula Student Racecar

Kerry He
Supervised by Hoam Chung

Abstract—In autonomous driving, the motion planning sub-
system is required to determine a feasible state and control
trajectory to navigate the vehicle to perform a specific task. This
paper presents an implementation of a receding horizon planner
(RHP) to perform motion planning for Monash Motorsport’s au-
tonomous racecar to compete in the Formula Student Driverless
competition. Multiple modelling and discretisation methods were
explored to determine the best performing RHP formulation.
Ultimately, a linear time-varying RHP formulation utilising a
dynamic bicycle model is proposed, where the vehicle dynamics
and path constraints are linearised at each time step, allowing
the RHP to be formulated and solved as a quadratic program.
Through simulated experiments, the proposed RHP is shown to
successfully outperform Monash Motorsport’s previous motion
planning implementations, and is demonstrated to safely achieve
speeds of up to 25 m/s while running in real time at 50 Hz.

I. INTRODUCTION

The growth of autonomous vehicle technology has been
accompanied with an interest in its application in racing,
with autonomous racing competitions such as the DARPA
Grand Challenge [1], Formula Student Driverless (FSD)1

and Roborace2 growing in popularity. A key sub-system in
autonomous driving software architectures which is pivotal to
maximising the racing capabilities of autonomous vehicles is
motion planning, which aims to find a dynamically feasible
trajectory, then follow this trajectory in real time in the
presence of noise, disturbances, and other uncertainties.

Several motion planning algorithms for autonomous racing
have been proposed in literature, such as pure pursuit [2] and
Stanley control [1]. An increasingly popular class of motion
planners are optimal control techniques such as receding hori-
zon planning (RHP) [3]–[5]. Compared to other algorithms,
the greatest advantage of optimal control techniques are their
unique ability to directly incorporate state and control con-
straints into the problem formulation in real time. Moreover,
optimal control problems can be formulated using high-fidelity
vehicle models, such as the kinematic bicycle model or the
dynamic bicycle model [3]. These properties are particularly
advantageous for autonomous racing, where maximising lap
time performance requires a thorough understanding of the
vehicle dynamics and handling limits of the vehicle.

Optimal control problems can be solved numerically by
discretising the problem into an optimisation problem, which
is then solved using suitable optimisation algorithms. How-
ever, this can be prohibitive for complex or nonlinear systems,

1https://www.formulastudent.de/fsg/
2https://roborace.com/

Fig. 1. Monash Motorsport’s driverless car, M19-D, driving autonomously.

such as the bicycle vehicle models, as the resulting nonlinear
program can be difficult to solve in real time. A common
approach to improve the real-time feasibility of the RHP is
to linearise the vehicle dynamics and constraints at each time
step to achieve a linear time-varying RHP (LTV-RHP), which
allows the problem to be formulated and solved more easily
as a quadratic program (QP) [4], [5].

Monash Motorsport (MMS) is Monash University’s For-
mula Student team which developed Australia’s first au-
tonomous Formula student racecar, M19-D, with the aim to
compete in FSD. M19-D is currently using an early RHP
implementation as its motion planner, which outputs target
velocities and steering wheel angles which are tracked by low-
level PID controllers. Due to being an early implementation,
the main goal for the planner was to successfully finish
missions, with lap time performance only being a secondary
subgoal. Therefore, the RHP was implemented using a rela-
tively simplistic formulation, and an optimal control library,
ACADO Toolkit [6], was used as a high-level interface to solve
the RHP problem.

This paper improves upon M19-D’s previous RHP imple-
mentation to achieve faster lap times by exploring two key
facets to the formulation of an RHP. Firstly, the paper improves
upon the modelling used in the RHP by investigating more
complex vehicle models and constraint formulations. Sec-
ondly, to achieve additional flexibility in the RHP formulation,
discretisation is performed manually as opposed to relying on
an optimal control library.

II. VEHICLE MODEL

The racecar is modelled using a dynamic bicycle model
shown in Figure 2, which is derived by considering tyre forces

1

and the resulting kinetics of a single-track model about its
centre of gravity (CoG). Longitudinal tyre forces arising from
slip from the front tyres and aerodynamic forces are assumed
to be negligible. The vehicle is defined by its mass m, yaw
moment of inertia I , and dimensions from its CoG lf and lr.

The vehicle state is defined in curvilinear coordinates, which
defines the vehicle relative to a specified path by introducing
the arclength travelled along the path s, the lateral deviation
from the path n, and the angular deviation from the path µ.
The path is constructed using piecewise cubic splines, and is
characterised by its curvature κ(s). Additionally, the vehicle
state includes the longitudinal ẋ and latitudinal ẏ velocities,
defined in the vehicle’s inertial frame, the yaw rate θ̇, and the
front steering wheel angle δ.

The control variables are defined such that the steering rate
δ̇ and driving force Fx are modelled as a first order transient
response to account for nontrivial actuator transient delay.
Thus, the control variables are defined as the velocity vt and
steering wheel angle δt target setpoints. Kv and Kδ represent
the equivalent gains of a proportional controller.

Overall, the vehicle model dynamics are expressed as

ṡ =
ẋ cos(µ)− ẏ sin(µ)

1− nκ(s)
(1a)

ṅ = ẋ sin(µ) + ẏ cos(µ) (1b)

µ̇ = θ̇ − ẋ cos(µ)− ẏ sin(µ)

1− nκ(s)
κ(s) (1c)

ẍ =
1

m
(mKv(vt − ẋ)− Fcf sin(δ) +mẏθ̇) (1d)

ÿ =
1

m
(Fcr + Fcf cos(δ)−mẋθ̇) (1e)

θ̈ =
1

I
(lfFcf cos(δ)− lrFcr) (1f)

δ̇ = Kδ(δt − δ). (1g)

Using the Pacejka Magic Formula [7], the front and rear
lateral tyre forces are defined as functions of the slip angle
and normal force on each tyre

Fcf = fc (αf , Fzf) (2a)
Fcr = fc (αr, Fzr) , (2b)

where the slip angles of the tyres are defined as

αf = δ − arctan

(
ẏ + lf θ̇

ẋ+ ẋmine−ẋ/ẋmin

)
(3a)

αr = − arctan

(
ẏ − lr θ̇

ẋ+ ẋmine−ẋ/ẋmin

)
. (3b)

The slip angle equations are augmented with a term in
the denominator which decays with the vehicle’s longitudinal
velocity, which is included to avoid the tyre forces from
becoming singular at low velocities.

The weight distribution between the front Fzf and rear Fzr
tyres is estimated using a simple constant moment balance
about the centre of gravity. Note that this simplification ignores
load transfer effects typically experienced by racecars.

δ

θ

Fcf

Fx
Fcr

y
x

lr

lf

vr

αr

vf
αf

. .
.

s

n

µ

Fig. 2. Dynamic bicycle model in curvilinear coordinates

III. RECEDING HORIZON PLANNING

Consider the nonlinear system f :Rnξ×Rnu → Rnξ defined
by the dynamic bicycle model presented in Section II

ξ̇(t) = f(ξ(t), u(t)), (4)

where ξ = [s n µ ẋ ẏ θ̇ δ]T and u = [vt δt]T represent
the state and control vectors respectively. The RHP is formu-
lated as a reference tracking optimal controller, such that the
objective function is defined as

J(ξ, u, ε, t0) = ‖ξ(tf)− ξr(tf)‖2Qf

+

∫ tf

t0

‖ξ(τ)− ξr(τ)‖2Q + ‖e(τ)‖2R dτ + qT ε,
(5)

where ξr ∈ Rnξ is the state reference trajectory obtained
from a precomputed optimal racing line, e(t) = [Fx(t) δ̇(t)]T

represents the effort exerted by the vehicle, ε ∈ Rnε+ is a vector
of slack variables, and Q, Qf ∈ Rnξ×nξ , R ∈ Rnu×nu and
q ∈ Rnε are state, terminal state, control, and slack variable
weights respectively. The objective function is constructed to
penalise deviations from the reference trajectory, while an
effort minimising regularisation term is included to have a
smoothing effect on the solution trajectory. A terminal penalty
is included to help enforce stability [8].

Path constraints g(ξ(t), u(t), ε):Rnξ × Rnu × Rnε+ → Rng
consisting of a combination of state, control and functional
constraints shown in (6) are enforced. Upper and lower bounds
on quantities are expressed as (·) and (·) respectively.

n− εn ≤ n(t) ≤ n+ εn (6a)

δ ≤ δ(t) ≤ δ (6b)
0 ≤ ẋ(t) (6c)

∆δ ≤ Kδ(δt(t)− δ(t)) ≤ ∆δ (6d)(
Kv(vt(t)− ẋ(t))

al

)2

+

(
Fcr(t)

mac

)2

− εa ≤ 1 (6e)

These constraints correspond to the track boundary con-
straints, steering angle limits, prevention from backwards
movement, slew rate of the steering angle, and tyre friction

2

ellipse constraints respectively. Constraints (6a) and (6e) are
formulated as soft constraints to allow for an additional
degree of flexibility in situations when the problem would
otherwise be infeasible, and no solution exists which would
satisfy the constraints. These are implemented using the slack
variables ε = [εn εa]T , which are penalised using a minmax
approximation of an ∞-norm penalty function [9].

Overall, the continuous-time RHP problem is formulated as

min
ξ,u,ε

J(ξ, u, ε, t0) (7a)

subj. to ξ(t0) = ξ̂ (7b)

ξ̇(t) = f(ξ(t), u(t)), t0 ≤ t ≤ tf (7c)
g ≤ g(ξ(t), u(t), ε) ≤ g, t0 ≤ t ≤ tf (7d)

ε ≥ 0. (7e)

Once the RHP (7) has been discretised using the method
described in Section IV, it is repeatedly solved in a receding
horizon fashion. This algorithm is visualised in Figure 3.

Past Future

i i+N

u∗(i)

ξr(i)

ξ∗(i)

u∗0(i)

Prediction horizon

Iteration

Fig. 3. Receding horizon planning algorithm. Only the controls at the first
time step of the solved optimal control trajectory u∗0(i) are used. In the next
time step, the prediction horizon shifts forward by a time step, and the optimal
trajectory ξ∗(i), u∗(i) is recomputed to find an updated set of controls.

IV. SUCCESSIVE LINEARISATION DISCRETISATION

To solve the RHP, the time horizon is discretised into N
discrete intervals spaced evenly by a time step ∆t to achieve
a finite number of optimisation variables that can be solved for.
This results in a state trajectory vector ξ = [ξ1 ξ2 . . . ξN]T

and control trajectory vector u = [u0 u1 . . . uN−1]T .
An LTV sequential single-shooting scheme is then used

to discretise the RHP problem. This involves expressing the
optimisation variables purely as the control trajectory u, which
requires the state trajectory ξ to be approximated as a linear
function of u. This results in the QP

min
uε

1

2
uTε Huε + fTuε (8a)

subj. to ξ0 = ξ̂ (8b)
γ ≤ Guε ≤ γ (8c)

ε ≥ 0, (8d)

where the control vector and slack variables are combined
into a single optimisation variable uε = [u ε]T .

To achieve the QP formulation (8), consider the problem of
transforming the objective function into a quadratic function

solely in terms of uε. By introducing a padding 0ε ∈ Rnε
as a zero vector with a length equal to the number of slack
variables, and redefining the error vector correspondingly as
eε = [e 0ε]T , the discretised objective function can be
expressed as the matrix equation

J(ξ, uε) = (ξ − ξr)T Q̃(ξ − ξr) + eTε R̃eε + q̃Tuε, (9)

where

Q̃ = blockdiag(Q, . . . , Q,Qf) (10a)

R̃ = blockdiag(R, . . . , R, 0ε) (10b)

q̃ = [0 . . . 0 q]T . (10c)

Now consider the Runge-Kutta fourth-order (RK4) integration
scheme fRK4:Rnξ × Rnu → Rnξ used to integrate the plant
model f

ξk+1 = ξk + fRK4(ξk, uk). (11)

This can be linearised by taking the first order Tay-
lor series expansion about a linearisation trajectory ξl =
[ξl,0 . . . ξl,N−1]T , ul = [ul,0 . . . ul,N−1]T , defined as
the previously solved optimal state and control trajectory. The
linearised equation can be expressed as the affine expression

ξk+1 = Akξk +Bkuk + dk, (12)

where

Ak = I +
∂fRK4

∂ξ

∣∣∣∣ξ=ξl,k
u=ul,k

, Bk =
∂fRK4

∂u

∣∣∣∣ξ=ξl,k
u=ul,k

(13a)

dk = ξl,k + fRK4(ξl,k, ul,k)−Akξl,k −Bkul,k. (13b)

The partial derivatives of the RK4 scheme can be found
in [10].

Once the system has been linearised, the state trajectory ξ
needs to be formulated as a function of the control trajectory
uε. This can be done by iteratively applying (12) from a given
initial condition ξ0. This can be expressed as

ξ = Ãξ0 + B̃uε + d̃, (14)

where Ã, B̃ and d̃ are derived using a similar method to
the batch approach method to solve linear quadratic regula-
tors [11].

A complication arises as the effort term eε needs to be
expressed as a difference between control and state variables,
which can be difficult to do using a sequential discretisation
scheme. Instead, a simplification is made such that eε is
defined relative to the initial state for the entire horizon.

eε = [u 0ε]T − u0, u0 = [ẋ0 δ0 . . . ẋ0 δ0 0ε]T (15)

Finally, given (14) and (15), the quadratic objective func-
tion (8a) can be derived such that

H = 2(B̃T Q̃B̃ + R̃) (16a)

f = 2(B̃T Q̃(Ãξ0 + d̃− ξr)− R̃u0) + q̃. (16b)

The path constraints g can be similarly treated by linearising
the constraint function along the same linearisation trajectory

3

ξl, ul to find expressions for G, γ and γ. In addition, to
improve the robustness of the linearised RHP, the tyre friction
ellipse constraint (6e) was linearised beforehand to create a
convex set using Na linearised constraints [5], and the front
and rear slip angles of the tyres were softly constrained to
ensure the vehicle remained within the linear regions of the
lateral tyre force function [4].

V. RHP FORMULATION ANALYSIS

Before evaluating the RHP performance in a full simulation,
its performance was compared to alternative modelling and
discretisation methods to justify the proposed RHP specifica-
tions. Comparisons were made against the kinematic bicycle
model, and against nonlinear discretisation schemes including
multiple shooting and trapezoidal collocation. These experi-
ments were performed in MATLAB using a simplified simu-
lation environment. Three tracks used in previous official FSD
competitions including Formula Student Germany (FSG2019),
Spain (FSS2019) and Online (FSO2020) were used to evaluate
the planner performances. The tradeoffs between lap time
performance and computation times between various RHP
formulations are presented in Table I and Figure 5, where the
results using the proposed formulation are highlighted.

The dynamic bicycle model (Dyn.) saw significant lap time
advantages over the kinematic bicycle model (Kin.). As max-
imisation of tyre forces is one of the most important factors
in vehicle racing [12], this lap time improvement is primarily
attributed to the improved utilisation of the friction ellipse by
being able to accurately model and constrain the tyre forces,
as seen in Figure 4. Furthermore, although the kinematic
bicycle model solved faster, the key requirement for real-time
feasibility of the RHP is for the solve times to be less than the
discretised time step, which was 50 ms in these preliminary
experiments. Improvements to the RHP algorithm such as
hot-starting and converting the code to C++ were expected to
reduce the computation times by approximately a factor of 10,
and bring the the dynamic bicycle model’s computation times

−10 0 10

−10

0

10

ac (m/s2)

a
l

(m
/s
2
)

Kin.
Dyn.

Fig. 4. Comparison of G-G plots over the first lap of FSG2019. The simulated
friction ellipse is shown in dashed lines.

TABLE I
COMPARISON OF SINGLE LAP TIMES BETWEEN DIFFERENT RHP SCHEMES.

Model Discretisation Total Lap Time (s)
FSG2019 FSS2019 FSO2020

Kin. LTV 27.27 28.13 35.27
Dyn. LTV 22.43 22.17 27.70
Dyn. TC 21.90 22.05 27.55
Dyn. MS 21.89 21.43 27.34

0 100 200 300 400 500

Dyn.+
MS

Dyn.+
TC

Dyn.+
LTV

Kin.+
LTV

18604, 2171
1736, 773, 542

1074, 878
547, 476

CPU solve times (ms)

Fig. 5. Comparison of computation times of RHP schemes throughout sim-
ulated experiments of one lap of each of FSG2019, FSS2019 and FSO2020.

under this threshold. Therefore, the dynamic bicycle model
was chosen for its superior lap time performance.

As the trapezoidal collocation (TC) and multiple shooting
(MS) schemes were solved as nonlinear programs, they were
observed to have significantly higher mean and maximum
computation times compared to the LTV scheme. Although it
is possible to set a maximum CPU time limit in optimisation
solvers, stopping the optimiser before convergence means that
feasibility of the optimal control solution is not guaranteed,
and thus degrades the real time performance of the planner.
Moreover, despite theoretically being more accurate by cap-
turing the nonlinearities of the vehicle model, these nonlinear
schemes did not achieve significantly improved lap times.
Hence, the LTV scheme was chosen for being a much lighter
formulation, and more suitable for online applications.

VI. EXPERIMENTATION

A. Experimental Setup

A hardware-in-the-loop simulation environment shown in
Figure 6 was used to evaluate the performance of the proposed
LTV-RHP when fully integrated into MMS’s autonomous
systems pipeline. The commercial vehicle modelling software
IPG CarMaker was used to simulate the vehicle dynamics.

The LTV-RHP was implemented in C++, and was solved us-
ing qpOASES [13]. Hot-starting and preset settings optimised
for RHP problems were used. A dead time of 150 ms was
compensated for by using a forward state prediction method

4

similar to that described in [14]. A time step of ∆t = 20 ms
with N = 20 was used.

The LTV-RHP was compared against two other motion
planners which were previously used by MMS. The first is
a baseline (BL) RHP formulation which utilises a kinematic
bicycle model in Cartesian coordinates, has a time step of
∆t = 600 ms with N = 5, and is discretised and solved using
ACADO Toolkit [6]. The second planner is a pure pursuit
algorithm (PP).

All simulations were run on an Intel i7-6500U CPU running
at 2.5 GHz with 8 GB of RAM on Linux Ubuntu 18.04. The
same tracks used in Section V were used in these experiments.

Sensor
simulation

Localisation
and

mapping

Motion
planning

Vehicle
dynamics
simulation

Fig. 6. Hardware-in-the-loop simulation environment pipeline used for final
evaluation of the RHP. Grey blocks represent simulated components of the real
world equivalents, and white blocks function identically between simulated
and real world missions.

B. Racing Performance

The simulated lap time results are summarised in Table II,
and the racing trajectory of LTV-RHP in FSG2019 is presented
in Figure 9. Overall, LTV-RHP consistently and significantly
outperformed all other planners in all tracks.

TABLE II
COMPARISON OF MISSION TIMES OVER 10 LAPS BETWEEN DIFFERENT

PLANNERS.

Total Lap Time (s)
FSG2019 FSS2019 FSO2020

LTV-RHP 215.4 231.5 339.4
Baseline RHP 307.7 282.9 476.9
Pure Pursuit 288.9 354.7 395.4

The improved performance of LTV-RHP can be attributed to
a few key factors. Firstly, by using the more complex dynamic
bicycle model, LTV-RHP was able to exploit the vehicle
dynamics much more effectively, as discussed in Section V.
As shown in the G-G plot in Figure 7, LTV-RHP was observed
to drive at the edges of the friction ellipse for the majority of
the track as opposed to the other two planners.

Secondly, LTV-RHP had improved path tracking capabilities
due to the use of curvilinear coordinates and enforcement of
track boundary constraints. BL and PP were both significantly
hindered by the lack of these factors; the only tunable parame-
ter for these planners to prevent track boundary violations was
to reduce the maximum reference velocities and accelerations,
as seen in the velocity plot in Figure 8. On the other hand,
LTV-RHP skirted about the boundaries and corner-cut in a
controlled manner much more frequently compared to BL
and PP as seen in the lateral deviation plot in Figure 8,

−10 0 10

−5

0

5

ay (m/s2)

a
x

(m
/s
2
)

LTV
BL
PP

Fig. 7. Comparison of G-G plots over the first lap of FSG2019. Estimation
of the friction ellipse is shown in dashed lines.

0

10

20

ẋ
(m

/s
)

Ref. LTV BL PP

0 50 100 150 200 250 300

−1

0

1

s (m)

n
(m

)

Bounds LTV BL PP

Fig. 8. Comparison of the longitudinal velocity (top) and lateral deviation
(bottom) over the first lap of FSG2019 each planner.

despite travelling at much higher speeds and accelerations. PP
was also observed to exhibit undesirable fluctuations in the
lateral deviation arising from oscillatory steering as opposed
to efficient corner cutting.

Finally, modelling the actuator transient response to help
compensate for time delay significantly contributed to the
improved performance. BL employed large time steps of
∆t = 600 ms to compensate for time delay. However, this
led to overdamped controls which had trouble performing
complex manoeuvres, which manifested as a flat velocity
profile as seen in Figure 8. In comparison, by modelling
the transient response, LTV-RHP could use much smaller
time steps while remaining robust to time delay, allowing the
planner to perform more aggressive manoeuvres to achieve
faster lap times.

5

−40 −20 0 20 40 60

−80

−60

−40

−20

0

X (m)

Y
(m

)

0

10

20

Sp
ee

d
(m

/s
)

Fig. 9. Simulated trajectory over the second lap of the vehicle in the FSG2019
using LTV-RHP. The beginning of the track and direction the vehicle navigates
the track in are indicated by the arrow. Behaviour expected from racing such
as corner cutting and slowing down before tight corners can be observed.

C. Computation time

The distribution of computation times measured from all
LTV-RHP experiments are shown in Figure 10. For the RHP
to run online, it must have a computation time less than the
discretised time step ∆t = 20 ms. All computation times are
observed to be under this threshold. The low median CPU time
is also beneficial as it therefore has a negligible contribution
to the predicted dead time of 150 ms.

However, a large spread in CPU times was also observed,
resulting in a maximum CPU time much greater than the
median. This variability was managed by setting the maximum
CPU time of the qpOASES solver to 10 ms to constrain the
upper bound of computation times. Throughout all of the
experiments, this limit was only hit once, representing 0.026%
of all solutions. As discussed in Section V, the extremely
low probability that this maximum computation time limit is
enforced is highly desirable.

0 2 4 6 8 10

CPU solve times (ms)

Fig. 10. Distribution of CPU times of LTV-RHP throughout simulated exper-
iments on 10 laps of FSG2019, FSS2019 and FSO2020. Total computation
time outliers make up 4.5% of all samples.

VII. CONCLUSION

This paper presents an LTV-RHP implementation for an
autonomous Formula Student racecar to compete in the FSD
competition. The use of a successive linearisation discretisa-
tion scheme utilising a dynamic bicycle model is proposed to
allow the RHP to operate the vehicle closer to the limits of its
handling capabilities, while remaining computationally light
enough to be feasibly solved in real time. This decision was

justified through preliminary experiments which compared it
against alternative modelling and discretisation techniques.

The LTV-RHP was validated and compared against MMS’s
existing motion planners in a hardware-in-the-loop simulation
environment, and is shown to successfully outperform MMS’s
previous motion planning implementation. The improved lap
time performance is attributed to an improved vehicle model,
improved path tracking capabilities, and improved time delay
compensation techniques.

For future work, real-world testing of the LTV-RHP is
a natural progression of the experimental work to properly
validate and evaluate its on-track performance. Further chal-
lenges expected in real-world testing include additional noise,
uncertainty, disturbances and time delay which will hinder the
performance and stability of the planner.

A second avenue for future work is to modify the RHP for
MMS’s new electric-driverless vehicle, M21. While M19-D
is a rear-wheel drive, M21 is a four-wheel drive with torque
vectoring capabilities. Adding an additional control variable
in the RHP plant model to account for the torque vectoring
capabilities is expected to allow for greater control over the
vehicle’s behaviour, and further improve the lap times that can
be achieved.

REFERENCES

[1] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley: The
robot that won the DARPA Grand Challenge,” Journal of field Robotics,
vol. 23, no. 9, pp. 661–692, 2006.

[2] G. Hartmann, Z. Shiller, and A. Azaria, “Autonomous head-to-head
racing in the Indy autonomous challenge simulation race,” arXiv preprint
arXiv:2109.05455, 2021.

[3] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in 2015
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2015, pp. 1094–1099.

[4] A. Katriniok and D. Abel, “LTV-MPC approach for lateral vehicle
guidance by front steering at the limits of vehicle dynamics,” in 2011
50th IEEE Conference on Decision and Control and European Control
Conference. IEEE, 2011, pp. 6828–6833.

[5] B. Alrifaee and J. Maczijewski, “Real-time trajectory optimization for
autonomous vehicle racing using sequential linearization,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 476–483.

[6] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit—an open-
source framework for automatic control and dynamic optimization,”
Optimal Control Applications and Methods, vol. 32, no. 3, pp. 298–
312, 2011.

[7] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle
system dynamics, vol. 21, no. S1, pp. 1–18, 1992.

[8] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Con-
strained model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000.

[9] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[10] A. Akpunar and S. Iplikci, “Runge-kutta model predictive speed control
for permanent magnet synchronous motors,” Energies, vol. 13, no. 5, p.
1216, 2020.

[11] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[12] C. Smith, Tune to win. Aero Publishers Fallbrook, 1978.
[13] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,

“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp. 327–
363, 2014.

[14] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods
for nonlinear MPC and moving horizon estimation,” in Nonlinear model
predictive control. Springer, 2009, pp. 391–417.

6

	Introduction
	Vehicle Model
	Receding Horizon Planning
	Successive Linearisation Discretisation
	RHP Formulation Analysis
	Experimentation
	Experimental Setup
	Racing Performance
	Computation time

	Conclusion
	References

