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Introduction

Motivation

• Placement of objects correctly in specific orientations is an important skill for robots 

• For example, a robot unpacking the dishwasher should place plates, glasses and bowls on shelves in 

certain orientations 

• However, this is a mostly overlooked field in robotic manipulation research
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Existing Literature

• Fu [1] explores human preferred object orientations at a theoretical level but doesn’t consider this in the 

context of robotic manipulation.

• Harada [2] uses an analytical approach based on matching planar surfaces of the object and placement 

surface, but requires access to the 3D object model

• Jiang [3] uses a learning-based approach on hand-chosen features, where possible placements are 

sampled and scored

Contributions

• Combine concept of human-preferred upright orientations as first explored by Fu [1] in the context of the 

robotic placement problem

• Propose a novel hardware-in-the-loop iterative approach which continuously applies rotations to the object 

until it converges to the upright object orientation

• Proof-of-concept implementation on a robotic system to demonstrate sim-to-real transfer feasibility
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Definitions:
• Upright orientation: Human-associated convenient orientations of objects

• Successful placement: Object is stable and in the upright orientation under gravitational and contact 

forces after release

Assumptions:
• No prior knowledge about object class, 3D model or upright orientation

• Has access to depth cameras and force sensing

• Placement surface is flat, infinite and uncluttered

• Each object has one upright orientation

Task:
• Robot starts with object already in hand

• Goal is to place object down successfully by rotating the object to the upright orientation

Introduction Problem Description Methodology Experiments Conclusion
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Methodology: Iterative Algorithm 



6

Placement Rotation Convolutional Neural Network (PR-CNN)
• Estimates the rotation that transforms the object to the upright orientation

Placement Quality Convolutional Neural Network (PQ-CNN)
• Estimates the confidence level that the object would be stable in its upright orientation if it is placed in 

its current orientation.

Introduction Problem Description Methodology Experiments Conclusion

Methodology: Networks
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Simulated
• 50 daily object models: 45 training objects, 5 test objects

• 5-fold cross validation

• 250 placement trials for each cross validation set

• 3 RGB-D cameras from different viewpoints

• Two sets of experiments

• Without robot – object is rotated in free space

• With robot – kinematics are enforced

Real world
• Only green bottle was in the training set, all other objects are novel

• 10 trials per object

• Single RGB-D camera

• Simple force-feedback used to place objects

• Direct sim-to-real transfer

Introduction Problem Description Methodology Experiments Conclusion
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Methods

• Baseline: Place on largest flat plane

• Single pass (SP): One use of PR-CNN

• Iterative (ITR): Iterative use of PR-CNN

• Iterative with Quality (ITR-Q): Our full approach combining PR-CNN and PQ-CNN.

Metrics

• Success Rate: Object is in upright orientation

• Stability Rate: Object does not fall over.

• Angular Error: The average angle difference.
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Failure Modes

• PR-CNN could converge to an incorrect orientation. 

Introduction Problem Description Methodology Experiments Conclusion

Results

Experiments: Simulated + No Robot
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Object Segmentation

• Train a GAN to remove the gripper from the image. 

• The GAN had to ‘hallucinate’ occluded by the gripper

Results

• Decrease in performance, especially with small objects where the GAN may struggle to segment the 

object. 
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Experiments: Simulated + Robot
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Modifications

• Depth images were preprocessed

• Moving-window of depth images to calculate average rotation to remove outliers

• Positions and rotations about z-axis were sampled to find kinematically feasible paths and goal poses for 

the robot

Results

• Achieved 88% success rate in the real world
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Experiments: Real World
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Limitations and future work

• More detailed analysis to be completed into sim-to-real transfer.

• Closed-loop reactive approach could be more useful.

• Extend representation to include multiple ground truth rotations.

Conclusion

• Placement is just as important as grasping

• Once the object is grasped, the robot must do something with the object, and the simplest thing is to place 

it back down

• Object orientations have meaning, and for placements to be useful these need to be understood by the 

robot

Introduction Problem Description Methodology Experiments Conclusion
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Angular representation

6D continuous rotational representation. SO(3) to 6D on left, 6D to SO(3) on right

Geodesic Error

Ground truth rotation: 𝑅𝑠
Output rotation: 𝑅𝑠

[4]     Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation representations in neural networks.” in CVPR, 2019.

Appendix A – Loss Function [4]
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Appendix B – Simulation Environment
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Appendix C – ITR v SP Training
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Appendix D – Design Parameters

Network architecture

Number of cameras

Angular representation
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