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Introduction

Motivation
» Placement of objects correctly in specific orientations is an important skill for robots

» For example, a robot unpacking the dishwasher should place plates, glasses and bowls on shelves in

certain orientations
* However, this is a mostly overlooked field in robotic manipulation research
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Introduction

Existing Literature

* Fu [1] explores human preferred object orientations at a theoretical level but doesn’t consider this in the
context of robotic manipulation.

« Harada [2] uses an analytical approach based on matching planar surfaces of the object and placement
surface, but requires access to the 3D object model

« Jiang [3] uses a learning-based approach on hand-chosen features, where possible placements are
sampled and scored

Contributions

« Combine concept of human-preferred upright orientations as first explored by Fu [1] in the context of the
robotic placement problem

* Propose a novel hardware-in-the-loop iterative approach which continuously applies rotations to the object
until it converges to the upright object orientation

« Proof-of-concept implementation on a robotic system to demonstrate sim-to-real transfer feasibility

[1] H.Fu, D. Cohen-Or, G. Dror, and A. Sheffer, “Upright orientation of man-made objects,” in ACM SIGGRAPH, 2008.
[2] K. Harada, T. Tsuji, K. Nagata, N. Yamanobe, H. Onda, T. Yoshimi, and Y. Kawai, “Object placement planner for robotic pick and place tasks,” in IEEE/RSJ IROS, 2012.
[3] Y.Jiang, C. Zheng, M. Lim, and A. Saxena, “Learning to place new objects,” IEEE ICRA, 2011.
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Problem Description

Definitions:
« Upright orientation: Human-associated convenient orientations of objects
« Successful placement: Object is stable and in the upright orientation under gravitational and contact

forces after release -
Vs

Assumptions:

« No prior knowledge about object class, 3D model or upright orientation
* Has access to depth cameras and force sensing

« Placement surface is flat, infinite and uncluttered

« Each object has one upright orientation
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Task:
* Robot starts with object already in hand
« Goal is to place object down successfully by rotating the object to the upright orientation

Problem Description Methodology
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Methodology: Iterative Algorithm
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Methodology: Networks

Placement Rotation Convolutional Neural Network (PR-CNN)
« Estimates the rotation that transforms the object to the upright orientation

Placement Quality Convolutional Neural Network (PQ-CNN)
» Estimates the confidence level that the object would be stable in its upright orientation if it is placed in

its current orientation.
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Experiments

Simulated
» 50 daily object models: 45 training objects, 5 test objects
« 5-fold cross validation
« 250 placement trials for each cross validation set
3 RGB-D cameras from different viewpoints
« Two sets of experiments
« Without robot — object is rotated in free space
« With robot — kinematics are enforced

Real world
« Only green bottle was in the training set, all other objects are novel
« 10 trials per object

« Single RGB-D camera

« Simple force-feedback used to place objects

« Direct sim-to-real transfer

Experiments Conclusion



Experiments

Methods

« Baseline: Place on largest flat plane

« Single pass (SP): One use of PR-CNN

» lterative (ITR): Iterative use of PR-CNN

 lterative with Quality (ITR-Q): Our full approach combining PR-CNN and PQ-CNN.

Metrics

« Success Rate: Object is in upright orientation
« Stability Rate: Object does not fall over.

« Angular Error: The average angle difference.
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Experiments: Simulated + No Robot

Results
Success Stability Rate Angular
Rate (%) (%) Error (°)
Baseline 54.0 £ 10.0 96.7 £+ 4.2 4.7 £ 115
SP 84.4 + 8.9 89.9 £ 5.8 22.8 £+ 13.1
ITR 96.1 £ 4.5 98.3 £+ 1.6 8.0 £ 7.1
ITR-Q 98.1 + 1.9 993 £ 1.1 52 £ 235

Failure Modes
 PR-CNN could converge to an incorrect orientation.
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Experiments: Simulated + Robot

Object Segmentation
« Train a GAN to remove the gripper from the image.
« The GAN had to ‘hallucinate’ occluded by the gripper

Results

« Decrease in performance, especially with small objects where the GAN may struggle to segment the
object.

Success Stability Angular
Rate (%) Rate (%) Error (°)
ITR-Q w/ Gripper | 90.3 = 2.6 953 £ 19 16.7 £ 7.2
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Experiments: Real World

Modifications

« Depth images were preprocessed

* Moving-window of depth images to calculate average rotation to remove outliers

« Positions and rotations about z-axis were sampled to find kinematically feasible paths and goal poses for
the robot

e
Results
* Achieved 88% success rate in the real world

Success Rate (%) Avg. Num. Iterations
Bowl 100.0 1.8
Sunscreen 90.0 1.8
Spray Bottle 80.0 1.6
Green Pitcher 80.0 1.7
Green Bottle 90.0 1.3

Experiments Conclusion
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Conclusion

Limitations and future work

« More detailed analysis to be completed into sim-to-real transfer.
» Closed-loop reactive approach could be more useful.

« Extend representation to include multiple ground truth rotations.

Conclusion

« Placement is just as important as grasping

» Once the object is grasped, the robot must do something with the object, and the simplest thing is to place
it back down

» Object orientations have meaning, and for placements to be useful these need to be understood by the
robot

Conclusion
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Appendix A — Loss Function [4]

Angular representation
6D continuous rotational representation. SO(3) to 6D on left, 6D to SO(3) on right
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Geodesic Error
Ground truth rotation: R,
Output rotation: R,

tr(R,Ry") — 1)
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tr(R) = Roo + R11 + Rao
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[4] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation representations in neural networks.” in CVPR, 2019.
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Appendix B — Simulation Environment
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Appendix C - ITR v SP Training
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Appendix D — Design Parameters

ITR (Success Rate %)

_ ResNet-50 SW 54.8
Network architecture ResNet-50 PT 20 6
ResNet-50 PT SW 98.4

ITR (Success rate %)

1 Camera 85.2

Number of cameras 2 Cameras 96.8
3 Cameras 98.4

4 Cameras 06.4

ITR (Success rate %)

. Euler 324

Angular representation Quaternion o6 4
6D [25] 98.4
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