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Quantum Channel Capacities

Quantum channel capacity (Bennet et al., 1997):

max
X∈Hn

I (X ) subj. to tr[X ] = 1, X ⪰ 0,

where

I (X ) := S(X ) + S(N (X ))− S(M(X )) (Quantum mutual inf.)

S(X ) := − tr[X log(X )] (Quantum entropy)

and N ,M : Hn → Hn are (related) linear functions.

How can we efficiently compute this quantity?

SDP approx. (Fawzi et al., 2019)? But no practical SDP solver for
large-scale problems of this type

Projected gradient-descent-type algorithms don’t work well
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Preliminaries

For positive definite matrix X =
∑n

i=1 λiviv
⊤
i , define matrix logarithm as

log(X ) =
n∑

i=1

log(λi )viv
⊤
i

Entropy:

Classical: H(x) := −
∑n

i=1 xi log(xi )

Quantum: S(X ) := − tr[X log(X )] = H(λ)

Relative entropy:

Classical: H(x ∥y) :=
∑n

i=1 xi log(xi/yi )

Quantum: S(X ∥Y ) := tr[X (log(X )− log(Y ))]

Quantum relative entropy is jointly convex in X and Y (nontrivial!)
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Mirror descent

Consider constrained convex optimization problem

min
x∈X

f (x).

Projected gradient descent can be represented as

xk+1 = argmin
x∈X

⟨∇f (xk), x⟩+ 1

2tk
∥x − xk∥22

Mirror descent replaces Euclidean norm with Bregman divergence

xk+1 = argmin
x∈X

⟨∇f (xk), x⟩+ 1

tk
Dφ(x ∥xk)

where
Dφ(x ∥y) := φ(x)− (φ(y) + ⟨∇φ(y), x − y⟩).
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Mirror descent

Mirror descent with X probability simplex, φ(x) = −H(x) gives

xk+1
i =

xki exp(−tk∂i f (x))∑n
j=1 x

k
j exp(−tk∂j f (x))

, ∀i = 1, . . . , n.

Mirror descent with X unit trace PSD matrices, φ(X ) = −S(X )

X k+1 =
exp(log(X k)− tk∇f (X k))

tr[exp(log(X k)− tk∇f (X k))]
.
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Relative smoothness

(Bauschke et al., 2017) and (Lu et al., 2018)

A function f is L-smooth relative to φ if for L > 0

Lφ− f convex.

A function f is µ-strongly convex relative to φ if for µ > 0

f − µφ convex.

(Bauschke et al., 2017) and (Lu et al., 2018)

Mirror descent w/ tk = 1/L converges sublinearly O(L/k) to global
optimum if f is L-smooth relative to φ.

If, additionally, f is also µ-strongly convex relative to φ, then mirror
descent will converge linearly O((1− µ/L)k) to global optimum.
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Quantum Channel Capacities

For a linear map N , define contraction coefficient as

CN = sup
X ,Y∈Hn

+

{
S(N (X )∥N (Y ))

S(X ∥Y )
: tr[X ] = tr[Y ] = 1, X ̸= Y

}
,

and expansion coefficient as

EN = inf
X ,Y∈Hn

+

{
S(N (X )∥N (Y ))

S(X ∥Y )
: tr[X ] = tr[Y ] = 1, X ̸= Y

}
,
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}
,

Remark

Can interpret CN and EN as quantum relative entropy versions of min.
and max. eigenvalues of N

Also, 0 ≤ EN ≤ CN ≤ 1 follows (nontrivially) from joint convexity of S
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+

{
S(N (X )∥N (Y ))

S(X ∥Y )
: tr[X ] = tr[Y ] = 1, X ̸= Y

}
,

Theorem 1 (HSF, 2023)

Recall quantum mutual information:

I (X ) := S(X ) + S(N (X ))− S(M(X )).

Negative quantum mutual information is (1 + CN − EM)-smooth and
(1 + EN − CM)-strongly convex rel. to −S .
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Numerical results
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Figure: Quantum channel capacity over X ∈ H64.
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Relationship to Blahut-Arimoto

Mirror descent applied to channel capacities is equivalent to seminal
Blahut-Arimoto algorithm from information theory!

Blahut-Arimoto algorithm first introduced (Blahut, 1972) and
(Arimoto, 1972) to solve for classical channel capacities.

Extended to quantum channel capacities in (Nagaoka, 1998), (Li &
Cai, 2019), (Ramakrishnan et al., 2021).

Derived using alternating optimization, but leads to same iterations
(and very similar convergence criteria and rates).
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Constrained Channel Capacities

Constrained quantum channel capacity

max
X∈Hn

I (X )

subj. to ⟨Ai ,X ⟩ ≤ bi , ∀i = 1, . . . , p

tr[X ] = 1

X ⪰ 0,

where Ai ∈ Hn and bi ∈ R encode linear constraints.

Not obvious how to perform mirror descent iteration now

X k+1 = argmin
X∈Hn

⟨∇I (X k),X ⟩+ 1

tk
Dφ(X ∥X k)

subj. to ⟨Ai ,X ⟩ ≤ bi , ∀i = 1, . . . , p

tr[X ] = 1

X ⪰ 0
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Primal-dual hybrid gradient

Consider linearly constrained convex optimization problem

min
x∈X

f (x)

subj. to b − Ax ≤ 0

Primal-dual hybrid gradient (PDHG) solves saddle point problem

inf
x∈X

sup
z≥0

L(x , z) := f (x) + ⟨z ,Ax − b⟩,

using alternating mirror descent steps on primal and dual variables

z̄k+1 = zk + θk(z
k − zk−1)

xk+1 = argmin
x∈X

{
⟨∇f (x) + A∗z̄k+1, x⟩+ 1

τk
Dφ(x ∥xk)

}
zk+1 = argmin

z≥0

{
−⟨z ,Axk+1 − b⟩+ 1

2γk
∥z − zk∥22

}
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Primal-dual hybrid gradient

Convergence result is simple extension of (Chambolle & Pock, 2016)

Observation

If f is L-smooth relative to φ, then PDHG with constant step sizes
τk = τ and γk = γ satisfying(

1

τ
− L

)
Dφ(x ∥x ′) +

1

2γ
∥z − z ′∥22 ≥ ⟨z − z ′,A(x − x ′)⟩,

for all x , x ′ ∈ X and z , z ′ ≥ 0, will have ergodic sublinear convergence
to the primal-dual solution.

Can also obtain ergodic sublinear convergence with backtracking PDHG
using similar ideas as (Jiang & Vandenberghe, 2022)
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Constrained Channel Capacities
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Figure: Quantum channel capacity over X ∈ H64 with 5 additional linear
inequality constraints.
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Conclusion

Summary:

Mirror descent can efficiently solve problems in quantum information

Relative smoothness and strong convexity provide convergence
guarantees

PDHG allows us to solve problems with more complicated constraints

Other applications:

Classical-quantum, quantum-quantum channel capacities
Quantum rate-distortion
Relative entropy of entanglement

Outlook:

Ergodic linear convergence under relative strong convexity?

Solve general quantum relative entropy programs using similar ideas?

K. He, J. Saunderson, H Fawzi, “A Bregman Proximal Perspective on Classical and
Quantum Blahut-Arimoto Algorithms,” IEEE Transactions on Information Theory, vol.
70, no. 8, pp. 5710-5730, Aug. 2024.
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