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Quantum Channel Capacities

Classical-quantum (cq) channel capacity (Schumacher & Westmoreland,
1997), (Holevo, 1998):

max
p ∈∆

S

( m∑
j=1

pjXj

)
−

m∑
j=1

pjS(Xj)

where Xj are positive semidefinite matrices and

S(X ) := − tr[X log(X )] (Quantum entropy)

Objective is concave in p.

How can we efficiently compute this quantity?

SDP approx. (Fawzi et al., 2019)? But no practical SDP solver for
large-scale problems of this type

Gradient-descent-type algorithms don’t work well
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Preliminaries

States:

Classical: ∆ probability distribution

Quantum: D density matrix (Hermitian, PSD, unit trace)

Let log(X ) =
∑

i log(λi )viv
⊤
i for X =

∑
i λiviv

⊤
i .

Entropy:

Classical: H(x) := −
∑n

i=1 xi log(xi )

Quantum: S(X ) := − tr[X log(X )] = H(λ)

Relative entropy:

Classical: H(x ∥y) :=
∑n

i=1 xi log(xi/yi )

Quantum: S(X ∥Y ) := tr[X (log(X )− log(Y ))]
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Blahut-Arimoto algorithm (Ramakrishnan et al., 2021)

Blahut-Arimoto algorithm first introduced (Blahut, 1972) and (Arimoto,
1972) to solve for classical channel capacities.

Extended to quantum channel capacities in (Nagaoka, 1998), (Li & Cai,
2019), (Ramakrishnan et al., 2021).

min
x∈D

⟨x ,F(x)⟩︸ ︷︷ ︸
f (x)

= min
x∈D

min
y∈D

⟨x ,F(y)⟩+ L S(x ∥y)︸ ︷︷ ︸
g(x ,y)

.

for some function F : Hn → Hn and constant L > 0.

e.g. F(p) =
m∑
j=1

eje⊤
j tr

[
Xj

(
log(Xj)− log

( m∑
j=1

pjXj

))]
.

Solves by using alternating optimization

yk+1 = argmin
y∈D

g(xk , y),

xk+1 = argmin
x∈D

g(x , yk+1).
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Blahut-Arimoto algorithm (Ramakrishnan et al., 2021)

If F is continuous and satisfies

µS(x ∥y) ≤ ⟨x ,F(x)−F(y)⟩ ≤ LS(x ∥y),

for all x , y ∈ relintD and some µ ≥ 0, then

yk+1 = xk

xk+1 =
exp(log(yk+1)−F(yk+1)/L)

tr[exp(log(yk+1)−F(yk+1)/L)]
.

and BA converges

sublinearly O(1/k); or

linearly O((1− µ/L)k) if µ > 0
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Blahut-Arimoto algorithm

Theorem 1 (HSF, 2023)

Consider quantum Blahut-Arimoto with continuous F such that

µS(x ∥y) ≤ ⟨x ,F(x)−F(y)⟩ ≤ LS(x ∥y),

The quantum Blahut-Arimoto iterates are equivalent to mirror descent
iterates applied to solve

min
x∈C

f (x)

where

∇f (x) = F(x) and f (x) = ⟨x ,F(x)⟩ = ⟨x ,∇f (x)⟩
C = D, kernel function −S , step size tk = 1/γ,

f is L-smooth relative to −S ,

f is µ-strongly convex relative to −S if µ > 0.

He, Kerry (Monash University) Blahut-Arimoto OP23 8 / 23



Mirror descent

Consider constrained convex optimization problem

min
x∈X

f (x).

Projected gradient descent can be represented as

xk+1 = argmin
x∈X

⟨∇f (xk), x⟩+ 1

2tk
∥x − xk∥22

Mirror descent replaces Euclidean norm with Bregman divergence

xk+1 = argmin
x∈X

⟨∇f (xk), x⟩+ 1

tk
Dφ(x ∥y)

where
Dφ(x ∥y) := φ(x)− (φ(y) + ⟨∇φ(y), x − y⟩).
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Mirror descent

Mirror descent w/ X = D, φ(x) = −S(x), Dφ(x ∥y) = S(x ∥y)

xk+1 = argmin
x∈D

⟨∇f (xk), x⟩+ 1

tk
S(x ∥y)

=
exp(log(xk)− tk∇f (xk))

tr[exp(log(xk)− tk∇f (xk))]
.

Recall Blahut-Arimoto iterate, where yk+1 = xk

xk+1 = argmin
x∈D

⟨F(xk), x⟩+ LS(x ∥xk)

=
exp(log(xk)−F(xk)/L)

tr[exp(log(xk)−F(xk)/L)]
.
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Relative smoothness

(Bauschke et al., 2017) and (Lu et al., 2018)

A function f is L-smooth relative to φ if for L > 0

⟨∇f (x)−∇f (y), x − y⟩ ≤ L(Dφ(x ∥y) + Dφ(y ∥x))

A function f is µ-strongly convex relative to φ if for µ > 0

⟨∇f (x)−∇f (y), x − y⟩ ≥ µ(Dφ(x ∥y) + Dφ(y ∥x))

f (p) = −S

( m∑
j=1

pjXj

)
+

m∑
j=1

pjS(Xj)

f is not smooth relative to ∥·∥22/2 (i.e., gradient not Lipschitz)

f is 1-smooth relative to −S( ·)
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Quantum Channel Capacities

(Bauschke et al., 2017) and (Lu et al., 2018)

A function f is L-smooth relative to φ if for L > 0

⟨∇f (x)−∇f (y), x − y⟩ ≤ L(Dφ(x ∥y) + Dφ(y ∥x))

A function f is µ-strongly convex relative to φ if for µ > 0

⟨∇f (x)−∇f (y), x − y⟩ ≥ µ(Dφ(x ∥y) + Dφ(y ∥x))

Mirror descent w/ tk = 1/L

Converges sublinearly O(1/k) if f is L-smooth relative to φ

Converges linearly O((1− µ/L)k) if f is also µ-strongly convex
relative to φ
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Relative smoothness

Sublinear convergence:

MD : 0 ≤ ⟨x − y ,∇f (x)−∇f (y)⟩ ≤ L(S(x ∥y) + S(y ∥x))
BA : 0 ≤ ⟨x ,∇f (x)−∇f (y)⟩ ≤ LS(x ∥y)

Linear convergence:

MD : µ(S(x ∥y) + S(y ∥x)) ≤ ⟨x − y ,∇f (x)−∇f (y)⟩
BA : µS(x ∥y) ≤ ⟨x ,∇f (x)−∇f (y)⟩

If f (x) = ⟨x ,∇f (x)⟩, then

⟨x ,∇f (x)−∇f (y)⟩ ≤ LS(x ∥y) ⇐⇒ f is L-smooth rel. to −S

⟨x ,∇f (x)−∇f (y)⟩ ≥ µS(x ∥y)︸ ︷︷ ︸
Conditions for BA convergence

⇐⇒ f is µ-strong convex rel. to −S︸ ︷︷ ︸
Conditions for MD convergence
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Constrained Channel Capacities

Constrained classical-quantum (cq) channel capacity:

max
p ∈∆

S

( m∑
j=1

pjρj

)
−

m∑
j=1

pjS(ρj)

subj. to Ap ≤ b,

Blahut-Arimoto algorithms cannot elegantly handle these constraints

pk+1 = argmin
p∈∆

⟨∇f (pk), p⟩+ 1

tk
H(p∥pk)

subj. to Ap ≤ b,
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Primal-dual hybrid gradient

Solve saddle point problem

inf
x∈C

sup
z∈Z

L(x , z) := f (x) + ⟨z ,Ax − b⟩.

Using primal-dual hybrid gradient

z̄k+1 = zk + θk(z
k − zk−1)

xk+1 = argmin
x∈C

{
⟨∇f (x) + A†z̄k+1, x⟩+ 1

τk
Dφ(x ∥xk)

}
zk+1 = argmin

z∈Z

{
−⟨z ,Axk+1 − b⟩+ 1

2γk
∥z − zk∥22

}

Ergodic sublinear convergence if f is L-smooth relative to φ.

Several variations using Bregman divergences e.g., (Chambolle &
Pock, 2016), (Jiang & Vandenberghe, 2022)
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Constrained Channel Capacities
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Figure: Classical-quantum channel capacity over p ∈ R32.
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Other applications: Relative entropy of entanglement

All states PPT Sep

*Entangled states = not separable

ρ

(Approximate) relative entropy of entanglement of ρ ∈ D:

min
σ∈PPT

S(ρ∥σ)

where for linear operator ( ·)TB

PPT = {ρ ∈ D : ρTB ⪰ 0},

He, Kerry (Monash University) Blahut-Arimoto OP23 20 / 23



Other applications: Relative entropy of entanglement

(Approximate) relative entropy of entanglement of ρ ∈ D:

min
σ∈PPT

S(ρ∥σ)

S( · ∥ ·) is jointly convex in both arguments.

Quantum Blahut-Arimoto framework cannot be applied to this problem

Objective function does not satisfy f (x) = ⟨x ,∇f (x)⟩
Objective function is not smooth relative to −S

But is λmax(ρ)-smooth and λmin(ρ)-strongly convex relative to
− log(det( ·)).
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Other applications: Relative entropy of entanglement
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Figure: Relative entropy of entanglement over ρ ∈ H25.
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Conclusion

Summary:

Blahut-Arimoto algorithms are a specific case of mirror descent and
relative smoothness analysis

Can extend to other applications by using different kernel functions
and algorithmic variations of mirror descent

Outlook:

What other problems in information theory can we extend to?

Solve general quantum relative entropy programs using similar ideas?

Watch arXiv for incoming preprint!
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