

On-The-Go Robot-to-Human Handovers with a Mobile Manipulator

Kerry He (Presenter)

Pradeepsundar Simini Wesley P. Chan Dana Kulic Elizabeth Croft Akansel Cosgun

Monash University, Australia

Introduction: Motivation

- Most handover research performed on fixed-base manipulators
- Handovers can also be performed on mobile manipulators which allow global access within a workspace
- Can we allow the base to continue to move while performing a handover?

Stop and deliver

On-the-go

Introduction Methodology Results Conclusion

Introduction: Related Work

Handovers w/ fixed-base manipulators:

- Yang et al., 2021
- Rosenberger et al., 2020
- Kupscik et al., 2018 considers cases where human is moving

Handovers w/ mobile manipulators:

- Choi et al., 2009
- Quispe, Martinson, and Oguchi, 2017
- Mainprice et al., 2012

However, the robot always comes to a **full stop** at the object transfer point

Introduction Methodology Results Conclusion

Introduction: Contributions

- We propose on-the-go handovers for mobile manipulators
- Compare against standard stop and deliver handovers
- Perform user studies to investigate subjective perceptions of human receivers

Introduction Methodology Results Conclusion

Methodology: Robot Implementation

- Experiments conducted on a Fetch Mobile Manipulator
- Localisation and mapping via. default ROS SLAM packages
- Control of arm and base performed using holistic optimization-based reactive controller (Haviland, Sünderhauf, and Corke, 2022)

roduction Results Conclusion

Methodology: Stop-and-deliver

troduction Methodology Results Conclusion

Methodology: On-the-go

ntroduction Methodology Results Conclusion

Methodology: On-the-go

eduction Methodology Results Conclusion

Methodology: Experimental Design

- Robot traverses down corridor towards goal
- Handover object is soft plushie
- Two independent variables:
 - Handover style (on-the-go vs. stop and deliver)
 - Giver (robot vs. human)
- Four handovers per participant, ran in randomized order

Experimental setup

Handover object

On-the-go

9

ntroduction Methodology Results Conclusion

Methodology: Survey

After each handover, rate on 5-point Likert scale:

- The giver was efficient in completing the handovers
- The interaction with the giver felt natural
- The giver's **timing** was appropriate
- The giver was competent in giving objects to me
- I felt **safe** during the interaction
- I was able to predict what the giver was going to do

After all four handovers:

- Which robot giver handover did you prefer
- Which human giver handover did you prefer

Methodology: Survey

Recruited 15 participants from University premises

- 11 male, 4 female participants
- Aged 20 to 31 (μ =22.9, σ =3.56)

Hypothesis:

On-the-go handovers will be perceived more positively than stop-and-deliver handovers in all subjective measures.

Analysis:

- Single-tailed Pratt Modified Wilcoxon signed-rank test
- 5% significance level

11

Results: Analysis

Hypothesis test summary

	H_{a}	Robot					
	114	W(15)	\boldsymbol{p}				
Efficiency	OtG>S&D	87.0	0.021				
Naturalness	OtG>S&D	80.0	0.020				
Timing	OtG>S&D	114.0	0.001				
Competence	OtG>S&D	55.0	0.291				
Safety	OtG>S&D	63.0	0.049				
Predictability	OtG>S&D	90.5	0.008				

	H_{a}	Human					
	114	W(15)	p				
Efficiency	OtG>S&D	81.0	0.016				
Naturalness	OtG>S&D	85.0	0.041				
Timing	OtG>S&D	106.5	0.002				
Competence	OtG>S&D	75.0	0.007				
Safety	OtG>S&D	42.0	0.042				
Predictability	OtG>S&D	101.0	0.003				

	Competence				Safety				Predictability						
OtG Rob.	1 2	10	2		4		11			4		6	5		
S&D Rob.	1 5	5	4		2	5	8			1	5	2	6	1	
OtG Hum.		15				1	5			1 1		13			
S&D Hum.	6		9		3		12			3		8		4	
06	% 25%	50%	75% 100)% 0	% 2:	5% 50	% 759	% 100	% 0	%	25%	50%	75%	100%	6
		Stroi	ngly Disagre	e	Disag	ree 🗆	Neutral	Agre	ee	St	rongly	Agree			

englucion

12

Results: Discussion

- On-the-go perceived as more efficient, natural, safer, predictable and have better timing
- However, not statistically significantly more competent
- Raw preferences do not show a clear preference of on-the-go
- Possibly due to preference being task-dependant

"[It] felt like each handover is good for a different purpose. [I] preferred [the on-the-go] handover for this particular [object]."

"If the robot was bringing me a plate of food, I would have preferred the [stop-and-deliver handover] since its safer."

Conclusion

- Stop and deliver is the standard way of performing handovers in existing literature
- However, on-the-go handovers can be more efficient and desirable in scenarios similar to ours

Future work:

- Better understand when and where on-the-go handovers are suitable
- Catching the attention of the handover receiver